Citation: | Zeng SD,Yang L.Research advances of various omics analyses in chronic refractory wounds on body surface[J].Chin J Burns Wounds,2023,39(1):75-80.DOI: 10.3760/cma.j.cn501225-20220216-00030. |
[1] |
GravesN,PhillipsCJ,HardingK.A narrative review of the epidemiology and economics of chronic wounds[J].Br J Dermatol,2022,187(2):141-148.DOI: 10.1111/bjd.20692.
|
[2] |
JonesRE,FosterDS,LongakerMT.Management of chronic wounds-2018[J].JAMA,2018,320(14):1481-1482.DOI: 10.1001/jama.2018.12426.
|
[3] |
ShawTJ,MartinP.Wound repair: a showcase for cell plasticity and migration[J].Curr Opin Cell Biol,2016,42:29-37.DOI: 10.1016/j.ceb.2016.04.001.
|
[4] |
OlivierM,AsmisR,HawkinsGA,et al.The need for multi-omics biomarker signatures in precision medicine[J].Int J Mol Sci,2019, 20(19):4781. DOI: 10.3390/ijms20194781.
|
[5] |
LuM,ZhanX.The crucial role of multiomic approach in cancer research and clinically relevant outcomes[J].EPMA J,2018,9(1):77-102.DOI: 10.1007/s13167-018-0128-8.
|
[6] |
董炜,肖玉瑞,吴敏洁,等.中国慢性难愈性创面诊疗思路及原则[J].中华烧伤杂志,2018,34(12):868-873.DOI: 10.3760/cma.j.issn.1009-2587.2018.12.010.
|
[7] |
FrykbergRG,BanksJ.Challenges in the treatment of chronic wounds[J].Adv Wound Care (New Rochelle),2015,4(9):560-582.DOI: 10.1089/wound.2015.0635.
|
[8] |
The Wound Healing Society. Chronic wound care guidelines[EB/OL].(2016-04-21)[2022-02-16]. https://woundheal.org/Publications/WHS-Wound-Care-Guidelines.cgi. |
[9] |
廖新成,郭光华.慢性难愈性创面的分类鉴别及临床评估[J/CD].中华损伤与修复杂志:电子版,2017,12(4):303-305.DOI: 10.3877/cma.j.issn.1673-9450.2017.04.012.
|
[10] |
BowersS,FrancoE.Chronic wounds: evaluation and management[J].Am Fam Physician,2020,101(3):159-166.
|
[11] |
RaffettoJD.Pathophysiology of chronic venous disease and venous ulcers[J].Surg Clin North Am,2018,98(2):337-347.DOI: 10.1016/j.suc.2017.11.002.
|
[12] |
SoyoyeDO,AbiodunOO,IkemRT,et al.Diabetes and peripheral artery disease: a review[J].World J Diabetes,2021,12(6):827-838.DOI: 10.4239/wjd.v12.i6.827.
|
[13] |
HutchingsG,KruszynaŁ,NawrockiMJ,et al.Molecular mechanisms associated with ROS-dependent angiogenesis in lower extremity artery disease[J].Antioxidants (Basel),2021, 10(5):735. DOI: 10.3390/antiox10050735.
|
[14] |
BandykDF.The diabetic foot: pathophysiology, evaluation, and treatment[J].Semin Vasc Surg,2018,31(2/3/4):43-48.DOI: 10.1053/j.semvascsurg.2019.02.001.
|
[15] |
HeadlamJ,IllsleyA.Pressure ulcers: an overview[J].Br J Hosp Med (Lond),2020,81(12):1-9.DOI: 10.12968/hmed.2020.0074.
|
[16] |
KwekM,ThangavelooM,HuiS,et al.Characterisation of an ischemia reperfusion model for the formation of a stage I pressure ulcer in mouse skin[J].J Tissue Viability,2021,30(3):352-362.DOI: 10.1016/j.jtv.2021.03.004.
|
[17] |
KuroseT,HashimotoM,OzawaJ,et al.Analysis of gene expression in eExperimental pressure ulcers in the rat with special reference to inflammatory cytokines[J].PLoS One,2015,10(7):e0132622.DOI: 10.1371/journal.pone.0132622.
|
[18] |
MirzaRE,FangMM,Weinheimer-HausEM,et al.Sustained inflammasome activity in macrophages impairs wound healing in type 2 diabetic humans and mice[J].Diabetes,2014,63(3):1103-1114.DOI: 10.2337/db13-0927.
|
[19] |
MirzaR,KohTJ.Dysregulation of monocyte/macrophage phenotype in wounds of diabetic mice[J].Cytokine,2011,56(2):256-264.DOI: 10.1016/j.cyto.2011.06.016.
|
[20] |
ParnhamA,BousfieldC.The influence of matrix metalloproteases and biofilm on chronic wound healing: a discussion[J].Br J Community Nurs,2018,23(Suppl 3):S22-29.DOI: 10.12968/bjcn.2018.23.Sup3.S22.
|
[21] |
ZhangC,LimJ,JeonHH,et al.FOXO1 deletion in keratinocytes improves diabetic wound healing through MMP9 regulation[J].Sci Rep,2017,7(1):10565.DOI: 10.1038/s41598-017-10999-3.
|
[22] |
StechmillerJ,CowanL,SchultzG.The role of doxycycline as a matrix metalloproteinase inhibitor for the treatment of chronic wounds[J].Biol Res Nurs,2010,11(4):336-344.DOI: 10.1177/1099800409346333.
|
[23] |
KathawalaMH,NgWL,LiuD,et al.Healing of chronic wounds: an update of recent developments and future possibilities[J].Tissue Eng Part B Rev,2019,25(5):429-444.DOI: 10.1089/ten.TEB.2019.0019.
|
[24] |
温学良,荣新洲.慢性创面治疗新进展[J/CD].中华损伤与修复杂志:电子版,2018,13(4):308-311.DOI: 10.3877/cma.j.issn.1673-9450.2018.04.013.
|
[25] |
郝擎宇,葛乃航,宋德恒,等.慢性难愈性创面治疗方法的研究进展[J].感染、炎症、修复,2017,18(3):186-189.DOI: 10.3969/j.issn.1672-8521.2017.03.017.
|
[26] |
GouldL,StuntzM,GiovannelliM,et al.Wound Healing Society 2015 update on guidelines for pressure ulcers[J].Wound Repair Regen,2016,24(1):145-162.DOI: 10.1111/wrr.12396.
|
[27] |
ChinL,AndersenJN,FutrealPA.Cancer genomics: from discovery science to personalized medicine[J].Nat Med,2011,17(3):297-303.DOI: 10.1038/nm.2323.
|
[28] |
EckhardU,MarinoG,ButlerGS,et al.Positional proteomics in the era of the human proteome project on the doorstep of precision medicine[J].Biochimie,2016,122:110-118.DOI: 10.1016/j.biochi.2015.10.018.
|
[29] |
DuarteTT,SpencerCT.Personalized proteomics: the future of precision medicine[J].Proteomes,2016,4(4):29.DOI: 10.3390/proteomes4040029.
|
[30] |
EverettJR.NMR-based pharmacometabonomics: a new paradigm for personalised or precision medicine[J].Prog Nucl Magn Reson Spectrosc,2017,102-103:1-14.DOI: 10.1016/j.pnmrs.2017.04.003.
|
[31] |
AdilA,KumarV,JanAT,et al.Single-cell transcriptomics: current methods and challenges in data acquisition and analysis[J].Front Neurosci,2021,15:591122.DOI: 10.3389/fnins.2021.591122.
|
[32] |
CollinsFS,VarmusH.A new initiative on precision medicine[J].N Engl J Med,2015,372(9):793-795.DOI: 10.1056/NEJMp1500523.
|
[33] |
PatelS,MaheshwariA,ChandraA.Biomarkers for wound healing and their evaluation[J].J Wound Care,2016,25(1):46-55.DOI: 10.12968/jowc.2016.25.1.46.
|
[34] |
StoneRC,ChenV,BurgessJ,et al.Genomics of human fibrotic diseases: disordered wound healing response[J].Int J Mol Sci,2020,21 (22):8590.DOI: 10.3390/ijms21228590.
|
[35] |
FuH,ZhouH,YuX,et al.Wounding triggers MIRO-1 dependent mitochondrial fragmentation that accelerates epidermal wound closure through oxidative signaling[J].Nat Commun,2020,11(1):1050.DOI: 10.1038/s41467-020-14885-x.
|
[36] |
ScottiMM,SwansonMS.RNA mis-splicing in disease[J].Nat Rev Genet,2016,17(1):19-32.DOI: 10.1038/nrg.2015.3.
|
[37] |
JamesGA,Ge ZhaoA,UsuiM,et al.Microsensor and transcriptomic signatures of oxygen depletion in biofilms associated with chronic wounds[J].Wound Repair Regen,2016,24(2):373-383.DOI: 10.1111/wrr.12401.
|
[38] |
BeelerJS,MarshallCB,Gonzalez-EricssonPI,et al.p73 regulates epidermal wound healing and induced keratinocyte programming[J].PLoS One,2019,14(6):e0218458.DOI: 10.1371/journal.pone.0218458.
|
[39] |
LiD,ChengS,PeiY,et al.Single-cell analysis reveals major histocompatibility complex Ⅱ-expressing keratinocytes in pressure ulcers with worse healing outcomes[J].J Invest Dermatol,2022,142(3 Pt A):705-716.DOI: 10.1016/j.jid.2021.07.176.
|
[40] |
YueL,ZhangF,SunR,et al.Generating proteomic big data for precision medicine[J].Proteomics,2020,20(21/22):e1900358.DOI: 10.1002/pmic.201900358.
|
[41] |
FernandezML,BroadbentJA,ShooterGK,et al.Development of an enhanced proteomic method to detect prognostic and diagnostic markers of healing in chronic wound fluid[J].Br J Dermatol,2008,158(2):281-290.DOI: 10.1111/j.1365-2133.2007.08362.x.
|
[42] |
BerberichB,ThrieneK,GretzmeierC,et al.Proteomic profiling of fibroblasts isolated from chronic wounds identifies disease-relevant signaling pathways[J].J Invest Dermatol,2020,140(11):2280-2290.e4.DOI: 10.1016/j.jid.2020.02.040.
|
[43] |
BealeDJ,PinuFR,KouremenosKA,et al.Review of recent developments in GC-MS approaches to metabolomics-based research[J].Metabolomics,2018,14(11):152.DOI: 10.1007/s11306-018-1449-2.
|
[44] |
NicholsonJK,LindonJC,HolmesE."Metabonomics": understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data[J].Xenobiotica,1999,29(11):1181-1189.DOI: 10.1080/004982599238047.
|
[45] |
JunkaA,WojtowiczW,ZąbekA,et al.Metabolic profiles of exudates from chronic leg ulcerations[J].J Pharm Biomed Anal,2017,137:13-22.DOI: 10.1016/j.jpba.2017.01.018.
|
[46] |
CzajkowskaJ,JunkaA,HoppeJ,et al.The co-culture of staphylococcal biofilm and fibroblast cell line: the correlation of biological phenomena with metabolic NMR1 footprint[J].Int J Mol Sci,2021,22(11):5826. DOI: 10.3390/ijms22115826.
|
[47] |
RamirezHA,LiangL,PastarI,et al.Comparative genomic, microRNA, and tissue analyses reveal subtle differences between non-diabetic and diabetic foot skin[J].PLoS One,2015,10(8):e0137133.DOI: 10.1371/journal.pone.0137133.
|
[48] |
IcliB,WuW,OzdemirD,et al.MicroRNA-135a-3p regulates angiogenesis and tissue repair by targeting p38 signaling in endothelial cells[J].FASEB J,2019,33(4):5599-5614.DOI: 10.1096/fj.201802063RR.
|
[49] |
ZhongH,QianJ,XiaoZ,et al.MicroRNA-133b inhibition restores EGFR expression and accelerates diabetes-impaired wound healing[J].Oxid Med Cell Longev,2021,2021:9306760.DOI: 10.1155/2021/9306760.
|
[50] |
JanuszykM,ChenK,HennD,et al.Characterization of diabetic and non-diabetic foot ulcers using single-cell RNA-sequencing[J].Micromachines (Basel),2020,11(9):815.DOI: 10.3390/mi11090815.
|
[51] |
TheocharidisG, BaltzisD, RoustitM, et al. Integrated skin transcriptomics and serum multiplex assays reveal novel mechanisms of wound healing in diabetic foot ulcers[J]. Diabetes, 2020, 69(10): 2157-2169. DOI: 10.2337/db20-0188.
|
[52] |
ⅡÁlvarez-Rodríguez,Castaño-TostadoE,García-GutiérrezDG,et al.Non-targeted metabolomic analysis reveals serum phospholipid alterations in patients with early stages of diabetic foot ulcer[J].Biomark Insights,2020,15:1177271920954828.DOI: 10.1177/1177271920954828.
|