Citation: | Peng Y,Meng H,Li PX,et al.Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J].Chin J Burns Wounds,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126. |
[1] |
付小兵. 中国组织修复与再生医学健康发展的思考与实践[J]. 中华创伤杂志, 2021, 37(7):580-585. DOI: 10.3760/cma.j.cn501098-20210525-00319.
|
[2] |
HuangS, FuX. Stem cell therapies and regenerative medicine in China[J]. Sci China Life Sci, 2014, 57(2):157-161. DOI: 10.1007/s11427-014-4608-3.
|
[3] |
姜玉峰, 付小兵, 陆树良, 等. 中国人群体表慢性难愈合创面病原微生物学特征分析[J]. 感染、炎症、修复, 2011, 12(3):134-138. DOI: 10.3969/j.issn.1672-8521.2011.03.003.
|
[4] |
DingX, TangQ, XuZ, et al. Challenges and innovations in treating chronic and acute wound infections: from basic science to clinical practice[J/OL]. Burns Trauma, 2022, 10:tkac014[2022-04-07].https://pubmed.ncbi.nlm.nih.gov/35611318/.DOI: 10.1093/burnst/tkac014.
|
[5] |
DingYW, WangZY, RenZW, et al. Advances in modified hyaluronic acid-based hydrogels for skin wound healing[J]. Biomater Sci, 2022, 10(13):3393-3409. DOI: 10.1039/d2bm00397j.
|
[6] |
SchilrreffP, AlexievU. Chronic inflammation in non-healing skin wounds and promising natural bioactive compounds treatment[J]. Int J Mol Sci, 2022, 23(9):4928. DOI: 10.3390/ijms23094928.
|
[7] |
WeiX, LiM, ZhengZ, et al. Senescence in chronic wounds and potential targeted therapies[J/OL]. Burns Trauma, 2022, 10:tkab045[2022-04-07].https://pubmed.ncbi.nlm.nih.gov/35187179/. DOI: 10.1093/burnst/tkab045.
|
[8] |
PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro?[J]. Cells, 2020, 9(7):1622. DOI: 10.3390/cells9071622.
|
[9] |
王莹, 代彦丽, 朴金龙, 等. 炎症因子、生长因子以及凋亡因子在压疮慢性难愈合性创面中的表达及作用[J]. 中国应用生理学杂志, 2017, 33(2):181-184,188. DOI: 10.12047/j.cjap.5425.2017.046.
|
[10] |
ChangM, NguyenTT. Strategy for treatment of infected diabetic foot ulcers[J]. Acc Chem Res, 2021, 54(5):1080-1093. DOI: 10.1021/acs.accounts.0c00864.
|
[11] |
BerthiaumeF, HsiaHC. Regenerative approaches for chronic wounds[J]. Annu Rev Biomed Eng, 2022, 24:61-83. DOI: 10.1146/annurev-bioeng-010220-113008.
|
[12] |
MarandaEL, Rodriguez-MenocalL, BadiavasEV. Role of mesenchymal stem cells in dermal repair in burns and diabetic wounds[J]. Curr Stem Cell Res Ther, 2017, 12(1):61-70. DOI: 10.2174/1574888x11666160714115926.
|
[13] |
GolchinA,ShamsF,BasiriA,et al.Combination therapy of stem cell-derived exosomes and biomaterials in the wound healing[J].Stem Cell Rev Rep,2022,18(6):1892-1911.DOI: 10.1007/s12015-021-10309-5.
|
[14] |
García-VarelaL, Vállez GarcíaD, AguiarP, et al. Head-to-head comparison of (R)-[11C]verapamil and [18F]MC225 in non-human primates, tracers for measuring P-glycoprotein function[J]. Eur J Nucl Med Mol Imaging, 2021, 48(13):4307-4317. DOI: 10.1007/s00259-021-05411-2.
|
[15] |
WickmanA. Best practices in engagement and research to practice[J]. J Agromedicine, 2021, 26(1):73-74. DOI: 10.1080/1059924X.2021.1849514.
|
[16] |
GoreckaJ, KostiukV, FereydooniA, et al. The potential and limitations of induced pluripotent stem cells to achieve wound healing[J]. Stem Cell Res Ther, 2019, 10(1):87. DOI: 10.1186/s13287-019-1185-1.
|
[17] |
Gerami-NainiB, SmithA, MaioneAG, et al. Generation of induced pluripotent stem cells from diabetic foot ulcer fibroblasts using a nonintegrative Sendai virus[J]. Cell Reprogram, 2016, 18(4):214-223. DOI: 10.1089/cell.2015.0087.
|
[18] |
GurusamyN, AlsayariA, RajasinghS, et al. Adult stem cells for regenerative therapy[J]. Prog Mol Biol Transl Sci, 2018, 160:1-22. DOI: 10.1016/bs.pmbts.2018.07.009.
|
[19] |
Guillamat-PratsR. The role of MSC in wound healing, scarring and regeneration[J]. Cells, 2021, 10(7):1729. DOI: 10.3390/cells10071729.
|
[20] |
AkasakaY.The role of mesenchymal stromal cells in tissue repair and fibrosis[J].Adv Wound Care (New Rochelle),2022,11(11):561-574.DOI: 10.1089/wound.2021.0037.
|
[21] |
LangerR, VacantiJ. Advances in tissue engineering[J]. J Pediatr Surg, 2016, 51(1):8-12. DOI: 10.1016/j.jpedsurg.2015.10.022.
|
[22] |
KocanB, MaziarzA, TabarkiewiczJ, et al. Trophic activity and phenotype of adipose tissue-derived mesenchymal stem cells as a background of their regenerative potential[J]. Stem Cells Int, 2017, 2017:1653254. DOI: 10.1155/2017/1653254.
|
[23] |
EncisoN, AvedilloL, FermínML, et al. Cutaneous wound healing: canine allogeneic ASC therapy[J]. Stem Cell Res Ther, 2020, 11(1):261. DOI: 10.1186/s13287-020-01778-5.
|
[24] |
FuX,LiuG,HalimA,et al.Mesenchymal stem cell migration and tissue repair[J].Cells,2019,8(8):784.DOI: 10.3390/cells8080784.
|
[25] |
CaoY, GangX, SunC, et al. Mesenchymal stem cells improve healing of diabetic foot ulcer[J]. J Diabetes Res, 2017, 2017:9328347. DOI: 10.1155/2017/9328347.
|
[26] |
YanG, XuX, ZhangW, et al. Preparation and electrochemical performance of P5+-doped Li4Ti5O12 as anode material for lithium-ion batteries[J]. Nanotechnology, 2020, 31(20):205402. DOI: 10.1088/1361-6528/ab7047.
|
[27] |
HuaJ, GongJ, MengH, et al. Comparison of different methods for the isolation of mesenchymal stem cells from umbilical cord matrix: proliferation and multilineage differentiation as compared to mesenchymal stem cells from umbilical cord blood and bone marrow[J]. Cell Biol Int, 2013,38(2):198-210. DOI: 10.1002/cbin.10188.
|
[28] |
MahmoodR, ChoudheryMS, MehmoodA, et al. In vitro differentiation potential of human placenta derived cells into skin cells[J]. Stem Cells Int, 2015, 2015:841062. DOI: 10.1155/2015/841062.
|
[29] |
UchidaK, OhkuboT, UtsunoF, et al. Modified Li7P3S11 glass-ceramic electrolyte and its characterization[J]. ACS Appl Mater Interfaces, 2021, 13(31):37071-37081. DOI: 10.1021/acsami.1c08507.
|
[30] |
LiuL,YuY,HouY,et al.Human umbilical cord mesenchymal stem cells transplantation promotes cutaneous wound healing of severe burned rats[J].PLoS One,2014,9(2):e88348.DOI: 10.1371/journal.pone.0088348.
|
[31] |
SharmaP, KumarA, DeyAD, et al. Stem cells and growth factors-based delivery approaches for chronic wound repair and regeneration: a promise to heal from within[J]. Life Sci, 2021, 268:118932. DOI: 10.1016/j.lfs.2020.118932.
|
[32] |
TangX, QinH, GuX, et al. China's landscape in regenerative medicine[J]. Biomaterials, 2017, 124:78-94. DOI: 10.1016/j.biomaterials.2017.01.044.
|
[33] |
MirzadeganE, GolshahiH, KazemnejadS. Current evidence on immunological and regenerative effects of menstrual blood stem cells seeded on scaffold consisting of amniotic membrane and silk fibroin in chronic wound[J]. Int Immunopharmacol, 2020, 85:106595. DOI: 10.1016/j.intimp.2020.106595.
|
[34] |
Ali ZahidA,ChakrabortyA,ShamiyaY,et al.Leveraging the advancements in functional biomaterials and scaffold fabrication technologies for chronic wound healing applications[J].Mater Horiz,2022,9(7):1850-1865.DOI: 10.1039/d2mh00115b.
|
[35] |
ArtheR, ArivuoliD, RaviV. Preparation and characterization of bioactive silk fibroin/paramylon blend films for chronic wound healing[J]. Int J Biol Macromol, 2020, 154:1324-1331. DOI: 10.1016/j.ijbiomac.2019.11.010.
|
[36] |
ZhouW, ZhaoX, ShiX, et al. Constructing tissue-engineered dressing membranes with adipose-derived stem cells and acellular dermal matrix for diabetic wound healing: a comparative study of hypoxia- or normoxia-culture modes[J]. Stem Cells Int, 2022, 2022:2976185. DOI: 10.1155/2022/2976185.
|
[37] |
GargRK, RennertRC, DuscherD, et al. Capillary force seeding of hydrogels for adipose-derived stem cell delivery in wounds[J]. Stem Cells Transl Med, 2014, 3(9):1079-1089. DOI: 10.5966/sctm.2014-0007.
|
[38] |
MofazzalJahromi MA, Sahandi ZangabadP, Moosavi BasriSM, et al. Nanomedicine and advanced technologies for burns: preventing infection and facilitating wound healing[J]. Adv Drug Deliv Rev, 2018, 123:33-64. DOI: 10.1016/j.addr.2017.08.001.
|
[39] |
SalvoJ, SandovalC. Role of copper nanoparticles in wound healing for chronic wounds: literature review[J/OL]. Burns Trauma, 2022, 10:tkab047[2022-04-07]. https://pubmed.ncbi.nlm.nih.gov/35071652/.DOI: 10.1093/burnst/tkab047.
|
[40] |
Blanco-FernandezB, CastañoO, Mateos-TimonedaMÁ, et al. Nanotechnology approaches in chronic wound healing[J]. Adv Wound Care (New Rochelle), 2021, 10(5):234-256. DOI: 10.1089/wound.2019.1094.
|
[41] |
LiM, DuC, GuoN, et al. Composition design and medical application of liposomes[J]. Eur J Med Chem, 2019, 164:640-653. DOI: 10.1016/j.ejmech.2019.01.007.
|
[42] |
ChenG. Journal of Materials Chemistry B and Biomaterials Science Editor's choice web collection: "Recent advances in microfluidics"[J]. J Mater Chem B, 2021, 9(17):3606-3607. DOI: 10.1039/d1tb90057a.
|
[43] |
Correia CarreiraS, BegumR, PerrimanAW. 3D bioprinting: the emergence of programmable biodesign[J]. Adv Healthc Mater, 2020, 9(15):e1900554. DOI: 10.1002/adhm.201900554.
|
[44] |
MoghaddamAS, KhonakdarHA, ArjmandM, et al. Review of bioprinting in regenerative medicine: naturally derived bioinks and stem cells[J]. ACS Appl Bio Mater, 2021, 4(5):4049-4070. DOI: 10.1021/acsabm.1c00219.
|
[45] |
ZhouF,HongY,LiangR,et al.Rapid printing of bio-inspired 3D tissue constructs for skin regeneration[J].Biomaterials,2020,258:120287.DOI: 10.1016/j.biomaterials.2020.120287.
|
[46] |
HospodiukM, DeyM, SosnoskiD, et al. The bioink: a comprehensive review on bioprintable materials[J]. Biotechnol Adv, 2017, 35(2):217-239. DOI: 10.1016/j.biotechadv.2016.12.006.
|
[47] |
DesanlisA, AlbouyM, RousselleP, et al. Validation of an implantable bioink using mechanical extraction of human skin cells: first steps to a 3D bioprinting treatment of deep second degree burn[J]. J Tissue Eng Regen Med, 2021, 15(1):37-48. DOI: 10.1002/term.3148.
|
[48] |
ShafieeA,CavalcantiAS,SaidyNT,et al.Convergence of 3D printed biomimetic wound dressings and adult stem cell therapy[J].Biomaterials,2021,268:120558. DOI: 10.1016/j.biomaterials.2020.120558.
|