Citation: | Duan HJ.Research on the development of genetically engineered xenogenic porcine skin and its application in the treatment of burn wounds[J].Chin J Burns Wounds,2022,38(9):805-809.DOI: 10.3760/cma.j.cn501225-20220419-00146. |
[1] |
柴家科, 段红杰, 尹会男. 烧伤创面愈合[M]//柴家科. 实用烧伤外科学. 北京:人民军医出版社, 2014: 197-217.
|
[2] |
KalsiR, MessnerF, BrandacherG. Skin xenotransplantation: technological advances and future directions[J]. Curr Opin Organ Transplant, 2020,25(5):464-476. DOI: 10.1097/MOT.0000000000000798.
|
[3] |
ChiuT, BurdA. "Xenograft" dressing in the treatment of burns[J]. Clin Dermatol, 2005,23(4):419-423. DOI: 10.1016/j.clindermatol.2004.07.027.
|
[4] |
DebeerS, Le LuduecJB, KaiserlianD, et al. Comparative histology and immunohistochemistry of porcine versus human skin[J]. Eur J Dermatol, 2013,23(4):456-466. DOI: 10.1684/ejd.2013.2060.
|
[5] |
YamamotoT, IwaseH, KingTW, et al. Skin xenotransplantation: historical review and clinical potential[J]. Burns, 2018,44(7):1738-1749. DOI: 10.1016/j.burns.2018.02.029.
|
[6] |
KitalaD, Klama-BaryłaA, ŁabuśW, et al. Porcine transgenic, acellular material as an alternative for human skin[J]. Transplant Proc, 2020,52(7):2218-2222. DOI: 10.1016/j.transproceed.2020.01.125.
|
[7] |
FishmanJA. Infectious disease risks in xenotransplantation[J]. Am J Transplant, 2018,18(8):1857-1864. DOI: 10.1111/ajt.14725.
|
[8] |
FishmanJA. Prevention of infection in xenotransplantation: designated pathogen-free swine in the safety equation[J]. Xenotransplantation, 2020,27(3):e12595. DOI: 10.1111/xen.12595.
|
[9] |
CooperD, HaraH, IwaseH, et al. Justification of specific genetic modifications in pigs for clinical organ xenotransplantation[J]. Xenotransplantation, 2019,26(4):e12516. DOI: 10.1111/xen.12516.
|
[10] |
HermansMH. Porcine xenografts vs. (cryopreserved) allografts in the management of partial thickness burns: is there a clinical difference?[J]. Burns, 2014,40(3):408-415. DOI: 10.1016/j.burns.2013.08.020.
|
[11] |
SunT, HanY, ChaiJ, et al. Transplantation of microskin autografts with overlaid selectively decellularized split-thickness porcine skin in the repair of deep burn wounds[J]. J Burn Care Res, 2011,32(3):e67-e73. DOI: 10.1097/BCR.0b013e318217f8e2.
|
[12] |
Guttman-YasskyE, ZhouL, KruegerJG. The skin as an immune organ: tolerance versus effector responses and applications to food allergy and hypersensitivity reactions[J]. J Allergy Clin Immunol, 2019,144(2):362-374. DOI: 10.1016/j.jaci.2019.03.021.
|
[13] |
Matter-ReissmannUB, ForteP, SchneiderMK, et al. Xenogeneic human NK cytotoxicity against porcine endothelial cells is perforin/granzyme B dependent and not inhibited by Bcl-2 overexpression[J]. Xenotransplantation, 2002,9(5):325-337. DOI: 10.1034/j.1399-3089.2002.01074.x.
|
[14] |
HaraH, WittW, CrossleyT, et al. Human dominant-negative class Ⅱ transactivator transgenic pigs-effect on the human anti-pig T-cell immune response and immune status[J]. Immunology, 2013,140(1):39-46. DOI: 10.1111/imm.12107.
|
[15] |
CooperDK, EzzelarabMB, HaraH, et al. The pathobiology of pig-to-primate xenotransplantation: a historical review[J]. Xenotransplantation, 2016,23(2):83-105. DOI: 10.1111/xen.12219.
|
[16] |
NiuD, MaX, YuanT, et al. Porcine genome engineering for xenotransplantation[J]. Adv Drug Deliv Rev, 2021,168:229-245. DOI: 10.1016/j.addr.2020.04.001.
|
[17] |
LuT, YangB, WangR, et al. Xenotransplantation: current status in preclinical research[J]. Front Immunol, 2019,10:3060. DOI: 10.3389/fimmu.2019.03060.
|
[18] |
WrightAV, NuñezJK, DoudnaJA. Biology and applications of CRISPR systems: harnessing Nature's toolbox for genome engineering[J]. Cell, 2016,164(1/2):29-44. DOI: 10.1016/j.cell.2015.12.035.
|
[19] |
Kimsa-DudekM, Strzalka-MrozikB, KimsaMW, et al. Screening pigs for xenotransplantation: expression of porcine endogenous retroviruses in transgenic pig skin[J]. Transgenic Res, 2015,24(3):529-536. DOI: 10.1007/s11248-015-9871-y.
|
[20] |
KotzDeborah.University of maryland school of medicine faculty scientists and clinicians perform historic first successful transplant of porcine heart into adult human with end-stage heart disease[EB/OL]. (2022-01-10)[2022-04-19]. https://www.medschool.umaryland.edu/news/2022/University-of-Maryland-School-of-Medicine-Faculty-Scientists-and-Clinicians-Perform-Historic-First-Successful-Transplant-of-Porcine-Heart-into-Adult-Human-with-End-Stage-Heart-Disease.html. |
[21] |
IwaseH, KleinEC, CooperDK. Physiologic aspects of pig kidney transplantation in nonhuman primates[J]. Comp Med, 2018,68(5):332-340. DOI: 10.30802/AALAS-CM-17-000117.
|
[22] |
WeinerJ, YamadaK, IshikawaY, et al. Prolonged survival of GalT-KO swine skin on baboons[J]. Xenotransplantation, 2010,17(2):147-152. DOI: 10.1111/j.1399-3089.2010.00576.x.
|
[23] |
AlbrittonA, LeonardDA, Leto BaroneA, et al. Lack of cross-sensitization between α-1,3-galactosyltransferase knockout porcine and allogeneic skin grafts permits serial grafting[J]. Transplantation, 2014,97(12):1209-1215. DOI: 10.1097/TP.0000000000000093.
|
[24] |
LeonardDA, MallardC, AlbrittonA, et al. Skin grafts from genetically modified α-1,3-galactosyltransferase knockout miniature swine: a functional equivalent to allografts[J]. Burns, 2017,43(8):1717-1724. DOI: 10.1016/j.burns.2017.04.026.
|
[25] |
HolzerP, AdkinsJ, MoultonK, et al. Vital, porcine, gal-knockout skin transplants provide efficacious temporary closure of full-thickness wounds: good laboratory practice-compliant studies in nonhuman primates[J]. J Burn Care Res, 2020,41(2):229-240. DOI: 10.1093/jbcr/irz124.
|
[26] |
FujitaT, MachidaK, MatsumotoY, et al. Cynomolgus monkey did not hyperacutely reject skin xenograft of N-acetylglucosaminyltransferase Ⅲ gene transgenic pig[J]. Transplant Proc, 2003,35(1):518. DOI: 10.1016/s0041-1345(02)03823-x.
|
[27] |
FujitaT, MiyagawaS, EzoeK, et al. Skin graft of double transgenic pigs of N-acetylglucosaminyltransferase Ⅲ (GnT-Ⅲ) and DAF (CD55) genes survived in cynomolgus monkey for 31 days[J]. Transpl Immunol, 2004,13(4):259-264. DOI: 10.1016/j.trim.2004.08.001.
|
[28] |
TenaAA, SachsDH, MallardC, et al. Prolonged survival of pig skin on baboons after administration of pig cells expressing human CD47[J]. Transplantation, 2017,101(2):316-321. DOI: 10.1097/TP.0000000000001267.
|
[29] |
程飚, 付小兵. 微环境控制是实现创面完美修复的必由之路[J].中华烧伤杂志,2020,36(11):1003-1008. DOI: 10.3760/cma.j.cn501120-20201009-00429.
|
[30] |
KatoT, KhanhVC, SatoK, et al. SDF-1 improves wound healing ability of glucocorticoid-treated adipose tissue-derived mesenchymal stem cells[J]. Biochem Biophys Res Commun, 2017,493(2):1010-1017. DOI: 10.1016/j.bbrc.2017.09.100.
|
[31] |
BarkerJC, BarkerAD, BillsJ, et al. Genome editing of mouse fibroblasts by homologous recombination for sustained secretion of PDGF-B and augmentation of wound healing[J]. Plast Reconstr Surg, 2014,134(3):389e-401e. DOI: 10.1097/PRS.0000000000000427.
|
[32] |
Massachusetts General Hospital. First application of genetically modified, live-cell, pig skin to a human wound[EB/OL]. (2019-10-11)[2022-04-19]. https://medicalxpress.com/news/2019-10-application-genetically-live-cell-pig-skin.html. |
[1] | Zhang Ting, Liu Jiaqi, Yang Yunshu, Han Juntao, Hu Dahai, Zheng Zhao. Clinical effects of Meek skin grafting combined with platelet-rich plasma in repairing extensive deep burn wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(12): 1150-1157. doi: 10.3760/cma.j.cn501225-20231124-00206 |
[2] | Shen Xin, Sun Zuoyi, Zhang Rui, Xue Yuying. Effects of recombinant human metallothionein-Ⅲ combined with wound dressing on wound healing of full-thickness skin defects in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(5): 425-432. doi: 10.3760/cma.j.cn501225-20231031-00164 |
[3] | Chen Jinmiao, Chen Meng, Ren Xiaochuan, Chen Weichao, Wang Na, Li Jiwei. Research progress of metal micro-battery dressings in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(6): 596-600. doi: 10.3760/cma.j.cn501225-20220926-00416 |
[4] | You Aijia, Li Wenjie, Zhou Junli, Li Chun. Meta-analysis of the effects of xenogeneic acellular dermal matrix dressings in the treatment of wounds in burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(2): 175-183. doi: 10.3760/cma.j.cn501120-20220106-00008 |
[5] | Ding Neng, Fu Xinxin, Wu Haimei, Zhu Lie. Research progress of the application of methacrylic anhydride gelatin hydrogel in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(11): 1096-1100. doi: 10.3760/cma.j.cn501225-20220308-00056 |
[6] | Ding Zhaozhao, Lyu Qiang. Research advances on the application of silk fibroin biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 973-977. doi: 10.3760/cma.j.cn501225-20220602-00212 |
[7] | Tan Jingjie, Peng Yizhi, Huang Guangtao. Research advances on the development and application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein system[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(7): 681-687. doi: 10.3760/cma.j.cn501120-20200329-00201 |
[8] | Huan Jingning. Developing trend of wound dressing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(1): 8-11. doi: 10.3760/cma.j.issn.1009-2587.2019.01.003 |
[9] | Sun Sujing, Huo Jiahui, Geng Zhijun, Sun Xiaoyan, Fu Xiaobing. Advances in application of clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated 9 system in stem cells research[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(4): 253-256. doi: 10.3760/cma.j.issn.1009-2587.2018.04.013 |
[10] | Zheng Shiqing, Chen Tiansheng, Ji Shi-zhao, Luo pengfei, Xiao Shichu. Advances in preparation and clinical application of amniotic membrane graft[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(8): 514-516. doi: 10.3760/cma.j.issn.1009-2587.2017.08.016 |
[11] | Liu Wei, Li Feng, Chen Xin, Pan Qing. Clinical efficacy of negative-pressure wound therapy combined with porcine acellular dermal matrix for repairing deep burn wounds in limbs[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(6): 356-362. doi: 10.3760/cma.j.issn.1009-2587.2016.06.011 |
[14] | ZHENG Zhao, HU Da-hai, ZHU Xiong-xiang, WANG Yao-jun, HAN Fu, LI Na, SHE Tao, YANG Chen. Repair of extensive deep burn wounds in late stage with free muscle flap[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(5): 341-343. doi: 10.3760/cma.j.issn.1009-2587.2012.05.007 |
[15] | HUANG Zheng-gen, WU Jun, LUO Gao-xing, HE Wei-feng, GAN Cheng-jun, YUAN Shun-zong, JIA Xiong-fei, TAN Jiang-lin, WANG Xiao-juan, GE Liang-peng, WEI Hong. Study of xenotransplantation of fetal pig skin precursor tissue[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(6): 437-440. |
[16] | GAO Wel-dong, LIU Xu-sheng, HAN Xing, HAN Yu-guo, YU Ji-chao. The application of artificial dermis and recombinant bFGF tier immersion bath in residual burn wound[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(1): 40-42. |
[17] | WANG Ling-feng, HU Guo-lin, ZHANG Zhi-jian, BA Te, RONG Zhi-dong, WANG Hong, ZHANG Jun, CAO Sheng-jun, ZHANG Guo-hua. The efficacy of biological dressing containing calcium and megnesium on the management of hydrafluoric acid burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(1): 49-51. |
[18] | XIANG Jun, WANG Xi-qiao, Qing Chun, LIA0 Zhen-jiang, LU Shu-liang. The influence of dermal template on the expressions of signal transduction protein Smad 3 and transforming growth factorβ1 and its receptor during wound healing process in patients with deep burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2005, 21(1): 52-54. |
[19] | WANG xi-qiao, SU Hai-tao, XIANG Jun, WANG Run-xiu, QING Chun, LU Shu-liang. The influence of dermal template on the p53 gene expression and apoptosis during wound repairing in burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(6): 351-353. |
[20] | CHEN Bi, JIANG Du-yin, JIA Chi-yu, TANG Chao-wu, YA0 Qing-jun, HAN Jun-tao, LIU Ya-ling, XU Ming-da. Experimental study and clinical application of composite skin grafting[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(6): 347-350. |