Citation: | Cao T,Hao T,Xiao D,et al.Effect and mechanism of human adipose-derived stem cell exosomes on diabetic peripheral neuropathy[J].Chin J Burns Wounds,2024,40(3):240-248.DOI: 10.3760/cma.j.cn501225-20231207-00230. |
[1] |
RehmanZU.Saving limbs in diabetics: challenges and opportunities[J].J Coll Physicians Surg Pak,2020,30(10):1003-1004.DOI: 10.29271/jcpsp.2020.10.1003.
|
[2] |
LowLL, KwanYH, KoMSM, et al. Epidemiologic characteristics of multimorbidity and sociodemographic factors associated with multimorbidity in a rapidly aging Asian country[J]. JAMA Netw Open, 2019,2(11):e1915245. DOI: 10.1001/jamanetworkopen.2019.15245.
|
[3] |
《多学科合作下糖尿病足防治专家共识(2020版)》编写组.多学科合作下糖尿病足防治专家共识(2020版)全版[J].中华烧伤杂志,2020,36(8):E01-E52.DOI: 10.3760/cma.j.cn501120-20200217-01000.
|
[4] |
Sable-MoritaS,OkuraM,TanikawaT,et al.Associations between diabetes-related foot disease, diabetes, and age-related complications in older patients[J].Eur Geriatr Med,2021,12(5):1003-1009.DOI: 10.1007/s41999-021-00491-7.
|
[5] |
ElafrosMA,AndersenH,BennettDL,et al.Towards prevention of diabetic peripheral neuropathy: clinical presentation, pathogenesis, and new treatments[J].Lancet Neurol,2022,21(10):922-936.DOI: 10.1016/S1474-4422(22)00188-0.
|
[6] |
EidSA,RumoraAE,BeirowskiB,et al.New perspectives in diabetic neuropathy[J].Neuron,2023,111(17):2623-2641.DOI: 10.1016/j.neuron.2023.05.003.
|
[7] |
YinK,QiaoT,ZhangY,et al.Unraveling shared risk factors for diabetic foot ulcer: a comprehensive Mendelian randomization analysis[J].BMJ Open Diabetes Res Care,2023,11(6):e003523. DOI: 10.1136/bmjdrc-2023-003523.
|
[8] |
SenCK,RoyS,KhannaS.Diabetic peripheral neuropathy associated with foot ulcer: one of a kind[J/OL].Antioxid Redox Signal,2023(2023-01-25)[2023-12-07]. https://pubmed.ncbi.nlm.nih.gov/35850520/.DOI:10.1089/ars.2022.0093.[published online ahead of print].
|
[9] |
ChenD,WangM,ShangX,et al.Development and validation of an incidence risk prediction model for early foot ulcer in diabetes based on a high evidence systematic review and meta-analysis[J].Diabetes Res Clin Pract,2021,180:109040.DOI: 10.1016/j.diabres.2021.109040.
|
[10] |
BhandariR,SharmaA,KuhadA.Novel nanotechnological approaches for targeting dorsal root ganglion (DRG) in mitigating diabetic neuropathic pain (DNP)[J].Front Endocrinol (Lausanne),2022,12:790747.DOI: 10.3389/fendo.2021.790747.
|
[11] |
SloanG, AlamU, SelvarajahD, et al. The treatment of painful diabetic neuropathy [J]. Curr Diabetes Rev, 2022, 18(5): e070721194556. DOI: 10.2174/1573399817666210707112413.
|
[12] |
NoceraG,JacobC.Mechanisms of Schwann cell plasticity involved in peripheral nerve repair after injury[J].Cell Mol Life Sci,2020,77(20):3977-3989.DOI: 10.1007/s00018-020-03516-9.
|
[13] |
Bosch-QueraltM,FledrichR,StassartRM.Schwann cell functions in peripheral nerve development and repair[J].Neurobiol Dis,2023,176:105952.DOI: 10.1016/j.nbd.2022.105952.
|
[14] |
RachanaKS,ManuMS,AdviraoGM.Insulin-induced upregulation of lipoprotein lipase in Schwann cells during diabetic peripheral neuropathy[J].Diabetes Metab Syndr,2018,12(4):525-530.DOI: 10.1016/j.dsx.2018.03.017.
|
[15] |
ZhangX,ZhaoS,YuanQ,et al.TXNIP, a novel key factor to cause Schwann cell dysfunction in diabetic peripheral neuropathy, under the regulation of PI3K/Akt pathway inhibition-induced DNMT1 and DNMT3a overexpression[J].Cell Death Dis,2021,12(7):642.DOI: 10.1038/s41419-021-03930-2.
|
[16] |
ZhuS,LiY,BennettS,et al.The role of glial cell line-derived neurotrophic factor family member artemin in neurological disorders and cancers[J].Cell Prolif,2020,53(7):e12860.DOI: 10.1111/cpr.12860.
|
[17] |
IlievaM, NielsenJ, KorshunovaI, et al. Artemin and an Artemin-derived peptide, artefin, induce neuronal survival, and differentiation through ret and NCAM[J].Front Mol Neurosci, 2019,12:47. DOI: 10.3389/fnmol.2019.00047.
|
[18] |
WangR,RossomandoA,SahDWY,et al.Artemin induced functional recovery and reinnervation after partial nerve injury[J].Pain,2014,155(3):476-484.DOI: 10.1016/j.pain.2013.11.007.
|
[19] |
WongLE, GibsonME, ArnoldHM, et al. Artemin promotes functional long-distance axonal regeneration to the brainstem after dorsal root crush[J]. Proc Natl Acad Sci U S A, 112(19):6170-6175. DOI: 10.1073/pnas.1502057112.
|
[20] |
中华医学会糖尿病学分会,中华医学会感染病学分会,中华医学会组织修复与再生分会.中国糖尿病足防治指南(2019版)(Ⅰ)[J].中华糖尿病杂志,2019,11(2):92-108.DOI: 10.3760/cma.j.issn.1674-5809.2019.02.004.
|
[21] |
ZhangY,BiJ,HuangJ,et al.Exosome: a review of its classification, isolation techniques, storage, diagnostic and targeted therapy applications[J].Int J Nanomedicine,2020,15:6917-6934.DOI: 10.2147/IJN.S264498.
|
[22] |
ShanF,JiQ,SongY,et al.A fast and efficient method for isolating Schwann cells from sciatic nerves of neonatal mice[J].J Neurosci Methods,2022,366:109404.DOI: 10.1016/j.jneumeth.2021.109404.
|
[23] |
LiK,ShiX,LuoM,et al.Taurine protects against myelin damage of sciatic nerve in diabetic peripheral neuropathy rats by controlling apoptosis of Schwann cells via NGF/Akt/GSK3β pathway[J].Exp Cell Res,2019,383(2):111557.DOI: 10.1016/j.yexcr.2019.111557.
|
[24] |
LiuB,XinW,TanJR,et al.Myelin sheath structure and regeneration in peripheral nerve injury repair[J].Proc Natl Acad Sci U S A,2019,116(44):22347-22352.DOI: 10.1073/pnas.1910292116.
|
[25] |
AhmedZ,SuggateEL,BrownER,et al.Schwann cell-derived factor-induced modulation of the NgR/p75NTR/EGFR axis disinhibits axon growth through CNS myelin in vivo and in vitro[J].Brain,2006,129(Pt 6):1517-1533.DOI: 10.1093/brain/awl080.
|
[26] |
HuangL,XiaB,ShiX,et al.Time-restricted release of multiple neurotrophic factors promotes axonal regeneration and functional recovery after peripheral nerve injury[J].FASEB J,2019,33(7):8600-8613.DOI: 10.1096/fj.201802065RR.
|
[27] |
MajdH,AminS,GhazizadehZ,et al.Deriving Schwann cells from hPSCs enables disease modeling and drug discovery for diabetic peripheral neuropathy[J].Cell Stem Cell,2023,30(5):632-647.e10.DOI: 10.1016/j.stem.2023.04.006.
|
[28] |
YuanQ,ZhangX,WeiW,et al.Lycorine improves peripheral nerve function by promoting Schwann cell autophagy via AMPK pathway activation and MMP9 downregulation in diabetic peripheral neuropathy[J].Pharmacol Res,2022,175:105985.DOI: 10.1016/j.phrs.2021.105985.
|
[29] |
BolonB,JingS,AsuncionF,et al.The candidate neuroprotective agent artemin induces autonomic neural dysplasia without preventing peripheral nerve dysfunction[J].Toxicol Pathol,2004,32(3):275-294.DOI: 10.1080/01926230490431475.
|
[30] |
TakakuS,TsukamotoM,NiimiN,et al.Exendin-4 promotes Schwann cell survival/migration and myelination in vitro[J].Int J Mol Sci,2021,22(6):2971.DOI: 10.3390/ijms22062971.
|
[31] |
YinY,QuH,YangQ,et al.Astragaloside Ⅳ alleviates Schwann cell injury in diabetic peripheral neuropathy by regulating microRNA-155-mediated autophagy[J].Phytomedicine,2021,92:153749.DOI: 10.1016/j.phymed.2021.153749.
|
[32] |
FontanaX,HristovaM,Da CostaC,et al.c-Jun in Schwann cells promotes axonal regeneration and motoneuron survival via paracrine signaling[J].J Cell Biol,2012,198(1):127-141.DOI: 10.1083/jcb.201205025.
|
[33] |
de AssisACC,ReisALS,NunesLV,et al.Stem cells and tissue engineering-based therapeutic interventions: promising strategies to improve peripheral nerve regeneration[J].Cell Mol Neurobiol,2023,43(2):433-454.DOI: 10.1007/s10571-022-01199-3.
|
[34] |
RhodeSC,BeierJP,RuhlT.Adipose tissue stem cells in peripheral nerve regeneration-in vitro and in vivo[J].J Neurosci Res,2021,99(2):545-560.DOI: 10.1002/jnr.24738.
|
[35] |
AzamM,GhufranH,ButtH,et al.Curcumin preconditioning enhances the efficacy of adipose-derived mesenchymal stem cells to accelerate healing of burn wounds[J/OL].Burns Trauma,2021,9:tkab021[2023-12-07].https://pubmed.ncbi.nlm.nih.gov/34514007/.DOI: 10.1093/burnst/tkab021.
|
[36] |
FanB, LiC, SzaladA, et al. Mesenchymal stromal cell-derived exosomes ameliorate peripheral neuropathy in a mouse model of diabetes[J]. Diabetologia, 2020, 63(2): 431-443.DOI: 10.1007/s00125-019-05043-0.
|
[37] |
YangZ,YangY,XuY,et al.Biomimetic nerve guidance conduit containing engineered exosomes of adipose-derived stem cells promotes peripheral nerve regeneration[J].Stem Cell Res Ther,2021,12(1):442.DOI: 10.1186/s13287-021-02528-x.
|
[38] |
YinG, YuB, LiuC, et al. Exosomes produced by adipose-derived stem cells inhibit schwann cells autophagy and promote the regeneration of the myelin sheath [J]. Int J Biochem Cell Biol, 2021, 132:105921. DOI: 10.1016/j.biocel.2021.105921.
|
1. | 冯秀丽,赵仁豪,杨腾,王娜,王国凤. 麻雀搜索算法优化的BP神经网络模型对糖尿病足的预测价值. 江苏医药. 2025(01): 37-42+117 . ![]() | |
2. | 周伟,郑红波,刘强,倪小坤,韦旻兴. 糖尿病足患者溃疡愈合的影响因素以及中西医治疗的研究进展. 糖尿病新世界. 2024(01): 195-198 . ![]() | |
3. | 吴翩,郑晖,陈功雷. 小野寺预后营养指数与糖尿病溃疡足严重程度关系及对预后的预测作用. 医学研究与战创伤救治. 2024(01): 72-76 . ![]() | |
4. | 文博,王汐玉,燕辛,莫然,林樾,谭谦. 糖尿病足复发风险预测模型的构建:联合时间依赖ROC的生存分析. 中国美容医学. 2024(05): 26-31 . ![]() | |
5. | 鹿艳军. 糖尿病足溃疡患者愈合后复发的影响因素. 中国民康医学. 2024(16): 6-9 . ![]() | |
6. | 万星宇,夏磊,庄若,朱丽群,眭升,梁臣,张炜. 糖尿病足溃疡复发相关预防措施的系统评价再评价. 中华现代护理杂志. 2024(27): 3647-3657 . ![]() | |
7. | 王红,李亮. 糖尿病足患者溃疡愈合后复发的影响因素及风险模型构建. 中国实用医刊. 2023(01): 54-58 . ![]() | |
8. | 耿怡丹,胡佳琪,董雪凡,李阳,田建丽. 糖尿病足溃疡病人复发危险因素的Meta分析. 全科护理. 2023(10): 1325-1328 . ![]() | |
9. | 夏磊,孙金姗,庄若,梁臣. 复发性糖尿病足溃疡相关研究的文献计量学分析. 全科护理. 2023(18): 2458-2462 . ![]() | |
10. | 冉倩,田娇,赵锡丽. 糖尿病足发病风险预测模型的研究进展. 重庆医学. 2023(15): 2374-2378 . ![]() | |
11. | 郭庆娇,欧阳静,饶佳琴,张艺之,余丽红,徐婉莹,龙锦花,高秀花,吴晓艳,顾颖. 糖尿病患者糖尿病足溃疡复发风险预测模型的构建及初步验证. 中华烧伤与创面修复杂志. 2023(12): 1149-1157 . ![]() | |
12. | 吕静,袁丽,李饶,黄凤梅. 糖尿病足溃疡复发风险预测模型的构建. 护理研究. 2022(06): 993-998 . ![]() | |
13. | 夏磊,庄若,吴玲,魏敏. 复发性糖尿病足溃疡相关危险因素的Meta分析. 中华现代护理杂志. 2022(09): 1143-1148 . ![]() | |
14. | 王沆,雷云宏,严骏,林君垚,林隆辉,黄烽. DSA下介入手术治疗对糖尿病足患者溃疡复发率及疼痛程度的影响. 糖尿病新世界. 2022(15): 184-186+190 . ![]() | |
15. | 王鹏,陈昭宏,蒋丽媛,周小茜,贾赤宇,肖厚安. 糖尿病足溃疡差异表达基因的筛选与功能分析及临床验证. 中华烧伤与创面修复杂志. 2022(10): 944-951 . ![]() | |
16. | 曾诗叶,姚志远,段欣,黄金. 糖尿病足患者就诊延迟的研究现状. 中华糖尿病杂志. 2022(11): 1332-1336 . ![]() | |
17. | 李温温,陈啸,刘亚萍,王琳茹,王晋军,黄贤明. 糖尿病足复发感染患者热休克蛋白70基因多态性. 中华医院感染学杂志. 2021(14): 2081-2084 . ![]() | |
18. | 王小玲,姜丽萍,姚文,李雯,唐雯婷,陈丽,王帆,陈寒蓓,简蔚霞,杨震. 中文版糖尿病足风险筛查及分级工具预测效果检验. 护理学杂志. 2021(17): 13-16 . ![]() | |
19. | 丘玉文,黎丽萍. 糖尿病肾病、糖尿病周围神经病变与糖化白蛋白的相关性分析. 糖尿病新世界. 2021(15): 35-37+45 . ![]() | |
20. | 陈思含,张云秋. 基于机器学习的2型糖尿病并发症预测模型研究. 中华医学图书情报杂志. 2020(11): 31-38 . ![]() |