Citation: | Wu J,Wei YT.Regenerative rehabilitation: the effects of physical factors on regeneration[J].Chin J Burns Wounds,2024,40(4):301-306.DOI: 10.3760/cma.j.cn501225-20231229-00278. |
[1] |
付小兵, 程飚. 再生康复医学:新需求 新融合 新方向 [J]. 中华烧伤杂志,2018,34(2): 65-68. DOI: 10.3760/cma.j.issn.1009-2587.2018.02.001.
|
[2] |
HeadPL. Rehabilitation considerations in regenerative medicine[J]. Phys Med Rehabil Clin N Am, 2016,27(4):1043-1054. DOI: 10.1016/j.pmr.2016.07.002.
|
[3] |
XiaP,ShiY,WangX,et al.Advances in the application of low-intensity pulsed ultrasound to mesenchymal stem cells[J].Stem Cell Res Ther,2022,13(1):214.DOI: 10.1186/s13287-022-02887-z.
|
[4] |
ChuG,NiuH.Knowledge mapping and global trends in the field of low-intensity pulsed ultrasound and endocrine and metabolic diseases: a bibliometric and visual analysis from 2012 to 2022[J].Front Endocrinol (Lausanne),2023,14:1237864.DOI: 10.3389/fendo.2023.1237864.
|
[5] |
WangY,LiJ,QiuY,et al.Low-intensity pulsed ultrasound promotes periodontal ligament stem cell migration through TWIST1-mediated SDF-1 expression[J].Int J Mol Med,2018,42(1):322-330.DOI: 10.3892/ijmm.2018.3592.
|
[6] |
KangPL,HuangHH,ChenT,et al.Angiogenesis-promoting effect of LIPUS on hADSCs and HUVECs cultured on collagen/hyaluronan scaffolds[J].Mater Sci Eng C Mater Biol Appl,2019,102:22-33.DOI: 10.1016/j.msec.2019.04.045.
|
[7] |
WangY,LiJ,ZhouJ,et al.Low-intensity pulsed ultrasound enhances bone marrow-derived stem cells-based periodontal regenerative therapies[J].Ultrasonics,2022,121:106678.DOI: 10.1016/j.ultras.2021.106678.
|
[8] |
LiX,ChenY,TuX,et al.Development of a three-dimensional nerve stretch growth device towards an implantable neural interface[J].Micromachines (Basel),2022,13(10):1558.DOI: 10.3390/mi13101558.
|
[9] |
SeoBR,MooneyDJ.Recent and future strategies of mechanotherapy for tissue regenerative rehabilitation[J].ACS Biomater Sci Eng,2022,8(11):4639-4642.DOI: 10.1021/acsbiomaterials.1c01477.
|
[10] |
BaekJ,LopezPA,LeeS,et al.Egr1 is a 3D matrix-specific mediator of mechanosensitive stem cell lineage commitment[J].Sci Adv,2022,8(15):eabm4646.DOI: 10.1126/sciadv.abm4646.
|
[11] |
EigenbergerA,FelthausO,SchratzenstallerT,et al.The effects of shear force-based processing of lipoaspirates on white adipose tissue and the differentiation potential of adipose derived stem cells[J].Cells,2022,11(16):2543. DOI: 10.3390/cells11162543.
|
[12] |
LiuW,JiangM,DouJ,et al.Effect of mechanical tension on the long-chain noncoding RNA expression profile of human skin regeneration[J].J Craniofac Surg,2023,34(5):1489-1492.DOI: 10.1097/SCS.0000000000009302.
|
[13] |
MascharakS,desJardins-ParkHE,DavittMF,et al.Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J].Science,2021,372(6540):eaba2374. DOI: 10.1126/science.aba2374.
|
[14] |
ShiJ,FarzanehM,KhoshnamSE.Yes-associated protein and PDZ binding motif: a critical signaling pathway in the control of human pluripotent stem cells self-renewal and differentiation[J].Cell Reprogram,2020,22(2):55-61.DOI: 10.1089/cell.2019.0084.
|
[15] |
TeranishiM,KuroseT,NakagawaK,et al.Hypergravity enhances RBM4 expression in human bone marrow-derived mesenchymal stem cells and accelerates their differentiation into neurons[J].Regen Ther,2023,22:109-114.DOI: 10.1016/j.reth.2022.12.010.
|
[16] |
LingensLF,RuhlT,BeierJP,et al.The effect of hypergravity, hyperbaric pressure, and hypoxia on osteogenic differentiation of adipose stem cells[J].Tissue Cell,2022,78:101886.DOI: 10.1016/j.tice.2022.101886.
|
[17] |
HuntER,ConfidesAL,AbshireSM,et al.Massage increases satellite cell number independent of the age-associated alterations in sarcolemma permeability[J].Physiol Rep,2019,7(17):e14200.DOI: 10.14814/phy2.14200.
|
[18] |
MillerBF,HamiltonKL,MajeedZR,et al.Enhanced skeletal muscle regrowth and remodelling in massaged and contralateral non-massaged hindlimb[J].J Physiol,2018,596(1):83-103.DOI: 10.1113/JP275089.
|
[19] |
HettingerZR,WenY,PeckBD,et al.Mechanotherapy reprograms aged muscle stromal cells to remodel the extracellular matrix during recovery from disuse[J].Function (Oxf),2022,3(3):zqac015.DOI: 10.1093/function/zqac015.
|
[20] |
FukadaSI,NakamuraA.Exercise/resistance training and muscle stem cells[J].Endocrinol Metab (Seoul),2021,36(4):737-744.DOI: 10.3803/EnM.2021.401.
|
[21] |
BlocquiauxS,GorskiT,Van RoieE,et al.The effect of resistance training, detraining and retraining on muscle strength and power, myofibre size, satellite cells and myonuclei in older men[J].Exp Gerontol,2020,133:110860.DOI: 10.1016/j.exger.2020.110860.
|
[22] |
ChenJ,ZhouR,FengY,et al.Molecular mechanisms of exercise contributing to tissue regeneration[J].Signal Transduct Target Ther,2022,7(1):383.DOI: 10.1038/s41392-022-01233-2.
|
[23] |
SaitoY,ChikenjiTS,MatsumuraT,et al.Exercise enhances skeletal muscle regeneration by promoting senescence in fibro-adipogenic progenitors[J].Nat Commun,2020,11(1):889.DOI: 10.1038/s41467-020-14734-x.
|
[24] |
Monemian EsfahaniA,RosenbohmJ,ReddyK,et al.Tissue regeneration from mechanical stretching of cell-cell adhesion[J].Tissue Eng Part C Methods,2019,25(11):631-640.DOI: 10.1089/ten.TEC.2019.0098.
|
[25] |
FengL,LiB,XiY,et al.Aerobic exercise and resistance exercise alleviate skeletal muscle atrophy through IGF-1/IGF-1R-PI3K/Akt pathway in mice with myocardial infarction[J].Am J Physiol Cell Physiol,2022,322(2):C164-C176.DOI: 10.1152/ajpcell.00344.2021.
|
[26] |
ChenZ,LiL,WuW,et al.Exercise protects proliferative muscle satellite cells against exhaustion via the Igfbp7-Akt-mTOR axis[J].Theranostics,2020,10(14):6448-6466.DOI: 10.7150/thno.43577.
|
[27] |
FanW,EvansRM.Exercise mimetics: impact on health and performance[J].Cell Metab,2017,25(2):242-247.DOI: 10.1016/j.cmet.2016.10.022.
|
[28] |
SilvaFCD, IopRDR, AndradeA, et al. Effects of physical exercise on the expression of microRNAs: a systematic review[J]. J Strength Cond Res, 2020,34(1):270-280. DOI: 10.1519/JSC.0000000000003103.
|
[29] |
SongJ,SunB,LiuS,et al.Polymerizing pyrrole coated poly (l-lactic acid-co-ε-caprolactone) (PLCL) conductive nanofibrous conduit combined with electric stimulation for long-range peripheral nerve regeneration[J].Front Mol Neurosci,2016,9:117.DOI: 10.3389/fnmol.2016.00117.
|
[30] |
YangY,LuoR,ChaoS,et al.Improved pharmacodynamics of epidermal growth factor via microneedles-based self-powered transcutaneous electrical stimulation[J].Nat Commun,2022,13(1):6908.DOI: 10.1038/s41467-022-34716-5.
|
[31] |
Toledano-MacíasE,Martínez-PascualMA,Hernández-BuleML.Electric currents of 448 kHz upregulate anti-senescence pathways in human dermal fibroblasts[J].J Cosmet Dermatol,2024,23(2):687-700.DOI: 10.1111/jocd.16019.
|
[32] |
TaiG,TaiM,ZhaoM.Electrically stimulated cell migration and its contribution to wound healing[J/OL].Burns Trauma,2018,6:20[2023-12-29].https://pubmed.ncbi.nlm.nih.gov/30003115/.DOI: 10.1186/s41038-018-0123-2.
|
[33] |
LiuM,XieD,ZengH,et al.Direct-current electric field stimulation promotes proliferation and maintains stemness of mesenchymal stem cells[J].Biotechniques,2023,74(6):293-301.DOI: 10.2144/btn-2022-0112.
|
[34] |
ZhuF,LiuW,LiP,et al.Electric/magnetic intervention for bone regeneration: a systematic review and network meta-analysis[J].Tissue Eng Part B Rev,2023,29(3):217-231.DOI: 10.1089/ten.TEB.2022.0127.
|
[35] |
ZhuK,ZhangL,XuX,et al.Pulsed electromagnetic fields improved peripheral nerve regeneration after delayed repair of one month[J].Bioelectromagnetics,2023,44(7/8):133-143.DOI: 10.1002/bem.22443.
|
[36] |
MazinY,LemosC,PaivaC,et al.The role of extracorporeal shock wave therapy in the treatment of muscle injuries: a systematic review[J].Cureus,2023,15(8):e44196.DOI: 10.7759/cureus.44196.
|
[37] |
SimplicioCL,PuritaJ,MurrellW,et al.Extracorporeal shock wave therapy mechanisms in musculoskeletal regenerative medicine[J].J Clin Orthop Trauma,2020,11(Suppl 3):S309-318.DOI: 10.1016/j.jcot.2020.02.004.
|
[38] |
AlshihriA, NiuW, KämmererPW, et al. The effects of shock wave stimulation of mesenchymal stem cells on proliferation, migration, and differentiation in an injectable gelatin matrix for osteogenic regeneration[J]. J Tissue Eng Regen Med,2020,14(11):1630-1640. DOI: 10.1002/term.3126.
|
[39] |
LiHX,ZhangZC,PengJ.Low-intensity extracorporeal shock wave therapy promotes recovery of sciatic nerve injury and the role of mechanical sensitive YAP/TAZ signaling pathway for nerve regeneration[J].Chin Med J (Engl),2021,134(22):2710-2720.DOI: 10.1097/CM9.0000000000001431.
|
[40] |
MoortgatP, AnthonissenM, Van DaeleU,et al. Shock wave therapy for wound healing and scar treatment[M/OL]//Téot L, Mustoe TA, Middelkoop E, et al. Textbook on scar management: state of the art management and emerging technologies. Cham (CH): Springer,2020[2023-12-29]. https://pubmed.ncbi.nlm.nih.gov/36351147/. https://pubmed.ncbi.nlm.nih.gov/36351147/
|
[41] |
SorgH,ZwetzichI,TilkornDJ,et al.Effects of extracorporeal shock waves on microcirculation and angiogenesis in the in vivo wound model of the diver box[J].Eur Surg Res,2021,62(3):134-143.DOI: 10.1159/000515737.
|
[42] |
ChenRF,LinYN,LiuKF,et al.Compare the effectiveness of extracorporeal shockwave and hyperbaric oxygen therapy on enhancing wound healing in a streptozotocin-induced diabetic rodent model[J].Kaohsiung J Med Sci,2023,39(11):1135-1144.DOI: 10.1002/kjm2.12746.
|
[43] |
LeeSH,KimYJ,KimYH,et al.Enhancing therapeutic efficacy of human adipose-derived stem cells by modulating photoreceptor expression for advanced wound healing[J].Stem Cell Res Ther,2022,13(1):215.DOI: 10.1186/s13287-022-02892-2.
|
[44] |
KimSW,ImGB,KimYH,et al.Fortifying angiogenic efficacy of conditioned media using phototoxic-free blue light for wound healing[J].Bioeng Transl Med,2023,8(3):e10462.DOI: 10.1002/btm2.10462.
|
[45] |
ChenY,LiuL,FanJ,et al.Low-level laser treatment promotes skin wound healing by activating hair follicle stem cells in female mice[J].Lasers Med Sci,2022,37(3):1699-1707.DOI: 10.1007/s10103-021-03419-6.
|
[46] |
ChangCJ,HsiaoYC,HangN,et al.Biophotonic effects of low-level laser therapy on adipose-derived stem cells for soft tissue deficiency[J].Ann Plast Surg,2023,90(5S Suppl 2):S158-164.DOI: 10.1097/SAP.0000000000003376.
|
[47] |
OliveiraRF,MarquioreLF,GomesC,et al.Interplay between epithelial and mesenchymal cells unveils essential proinflammatory and pro-resolutive mediators modulated by photobiomodulation therapy at 660 nm[J].Wound Repair Regen,2022,30(3):345-356.DOI: 10.1111/wrr.13010.
|
[48] |
AsadiR,MostafaviniaA,AminiA,et al.Acceleration of a delayed healing wound repair model in diabetic rats by additive impacts of photobiomodulation plus conditioned medium of adipose-derived stem cells[J].J Diabetes Metab Disord,2023,22(2):1551-1560.DOI: 10.1007/s40200-023-01285-3.
|