Wu HL,Chen YF,Li ST,et al.Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method[J].Chin J Burns Wounds,2024,40(6):572-578.DOI: 10.3760/cma.j.cn501225-20240203-00046.
Citation: Wu HL,Chen YF,Li ST,et al.Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method[J].Chin J Burns Wounds,2024,40(6):572-578.DOI: 10.3760/cma.j.cn501225-20240203-00046.

Analysis of the causal relationship between human immune cells and hypertrophic scar using two-sample bidirectional Mendelian randomization method

doi: 10.3760/cma.j.cn501225-20240203-00046
Funds:

General Program of National Natural Science Foundation of China 82172213

More Information
  •   Objective  To explore the causal relationship between human immune cells and hypertrophic scar (HS) using two-sample bidirectional Mendelian randomization (MR) method.  Methods  This study was based on two-sample MR method, and the datasets of 731 immune cells and HS were obtained from the genome-wide association study (GWAS) catalog database and Finngen database, respectively. A significance threshold was established to discern single nucleotide polymorphism (SNP) significantly correlated with immune cells or HS, thereby eliminating the impact of weak instrumental variable bias. The inverse variance weighted (IVW) method (meanwhile, the Benjamini-Hochberg (BH) procedure of false discovery rate (FDR) to adjust P values) was used for preliminary detection of the causal relationship between immune cells and HS and screen the immune cells that had a significant causal relationship with HS. Further, the causal relationship between the selected immune cells and HS was detected through five two-sample MR methods: IVW method, weighted median method, simple mode method, weighted mode method, and MR-Egger method, and the scatter plot was drawn. SNPs conformed to the hypothesis were subjected to Cochran Q test for heterogeneity assessment, MR-Egger regression coupled with MR-PRESSO to eliminate horizontal pleiotropic effects, and a leave-one-out analysis was also conducted to determine if significant results were driven by individual SNP. Finally, the IVW method contained in the two-sample MR analysis was utilized to inversely examine the causal relationship between HS and immune cells.  Results  The number of SNPs in 731 immune cells reaching the significance threshold varied from 7 to 1 786, while in HS, 119 SNPs met the significance threshold, with the F values of all SNPs being greater than 10, suggesting a low likelihood of bias from weak instrumental variables. The IVW method revealed that 60 types of immune cells potentially had a causal relationship with HS (with all P values <0.05), and after adjustment using the BH method, only CD45RA and CD39 positive regulatory T cell (Treg) maintained a potentially strong causal relationship with HS (PFDR<0.05). The IVW method (with odds ratio of 1.16 and 95% confidence interval of 1.08-1.24, P<0.05, PFDR<0.05), weighted median method (with odds ratio of 1.16 and 95% confidence interval of 1.05-1.28, P<0.05), weighted mode method (with odds ratio of 1.14 and 95% confidence interval of 1.02-1.27, P<0.05), and MR-Egger method (with odds ratio of 1.18 and 95% confidence interval of 1.07-1.30, P<0.05) of scatter plot all suggested a causal relationship between the 14 SNPs of CD45RA and CD39 positive Treg and risk of HS, only simple mode method of scatter plot suggested a not obvious relationship between the 14 SNPs of CD45RA and CD39 positive Treg and risk of HS (P>0.05). Cochran Q test indicated no heterogeneity in the causal relationship between CD45RA on CD39 positive Treg and HS (P>0.05). MR-Egger regression and MR-PRESSO analyses showed that there was no horizontal pleiotropy in the significant causal relationship between CD45RA and CD39 positive Treg and HS (P>0.05). Leave-one-out analysis confirmed that the significant causal relationship between CD45RA and CD39 positive Treg and HS remained stable after sequentially removing individual SNP. Reverse two-sample MR analysis showed that HS had no potential causal relationship with any of the 731 types of immune cells (P>0.05).  Conclusions  From the perspective of genetics, it is revealed that immune cells CD45RA and CD39 positive Treg may increase the risk of HS.

     

  • [1]
    CaiH, LiuX, LiuD, et al. GEO data mining identifies potential immune-related genes in hypertrophic scar and verities in a rabbit model[J]. Heliyon, 2023,9(7):e17266. DOI: 10.1016/j.heliyon.2023.e17266.
    [2]
    LimandjajaGC, NiessenFB, ScheperRJ, et al. Hypertrophic scars and keloids: overview of the evidence and practical guide for differentiating between these abnormal scars[J]. Exp Dermatol, 2021,30(1):146-161. DOI: 10.1111/exd.14121.
    [3]
    Ud-DinS, BayatA. Controlling inflammation pre-emptively or at the time of cutaneous injury optimises outcome of skin scarring[J]. Front Immunol, 2022,13:883239. DOI: 10.3389/fimmu.2022.883239.
    [4]
    ShakerSA, AyuobNN, HajrahNH. Cell talk: a phenomenon observed in the keloid scar by immunohistochemical study[J]. Appl Immunohistochem Mol Morphol, 2011,19(2):153-159. DOI: 10.1097/PAI.0b013e3181efa2ef.
    [5]
    GauglitzGG, KortingHC, PavicicT, et al. Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies[J]. Mol Med, 2011,17(1/2):113-125. DOI: 10.2119/molmed.2009.00153.
    [6]
    WangZC, ZhaoWY, CaoY, et al. The roles of inflammation in keloid and hypertrophic scars[J]. Front Immunol, 2020,11:603187. DOI: 10.3389/fimmu.2020.603187.
    [7]
    WongVW, PaternoJ, SorkinM, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011,25(12):4498-4510. DOI: 10.1096/fj.10-178087.
    [8]
    ChenB, LiH, XiaW. Imiquimod regulating Th1 and Th2 cell-related chemokines to inhibit scar hyperplasia[J]. Int Wound J, 2019,16(6):1281-1288. DOI: 10.1111/iwj.13183.
    [9]
    CarterAR, SandersonE, HammertonG, et al. Mendelian randomisation for mediation analysis: current methods and challenges for implementation[J]. Eur J Epidemiol, 2021,36(5):465-478. DOI: 10.1007/s10654-021-00757-1.
    [10]
    杨亮亮, 邓辰亮, 杨松林. 巨噬细胞在增生性瘢痕形成机制中的研究进展[J].中国美容整形外科杂志,2019,30(3):191-192,后插1. DOI: 10.3969/j.issn.1673-7040.2019.03.021.
    [11]
    BoothbyIC, CohenJN, RosenblumMD. Regulatory T cells in skin injury: at the crossroads of tolerance and tissue repair[J]. Sci Immunol, 2020,5(47):eaaz9631.DOI: 10.1126/sciimmunol.aaz9631.
    [12]
    BirneyE. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022,12(4):a041302.DOI: 10.1101/cshperspect.a041302.
    [13]
    OrrùV, SteriM, SidoreC, et al. Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J]. Nat Genet, 2020,52(10):1036-1045. DOI: 10.1038/s41588-020-0684-4.
    [14]
    SidoreC, BusoneroF, MaschioA, et al. Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers[J]. Nat Genet, 2015,47(11):1272-1281. DOI: 10.1038/ng.3368.
    [15]
    GuJ, YanGM, KongXL, et al. Assessing the causal relationship between immune traits and systemic lupus erythematosus by bi-directional Mendelian randomization analysis[J]. Mol Genet Genomics, 2023,298(6):1493-1503. DOI: 10.1007/s00438-023-02071-9.
    [16]
    1000 Genomes Project Consortium, AutonA, BrooksLD, et al. A global reference for human genetic variation[J]. Nature, 2015,526(7571):68-74. DOI: 10.1038/nature15393.
    [17]
    ShortWD, OlutoyeOO, PadonBW, et al. Advances in non-invasive biosensing measures to monitor wound healing progression[J]. Front Bioeng Biotechnol, 2022,10:952198. DOI: 10.3389/fbioe.2022.952198.
    [18]
    LiuY, Chinese Burn Association. Chinese expert consensus on the management of pediatric deep partial-thickness burn wounds (2023 edition)[J/OL]. Burns Trauma, 2023,11:tkad053[2024-02-03]. https://pubmed.ncbi.nlm.nih.gov/37936895/. DOI: 10.1093/burnst/tkad053.
    [19]
    AlBarashdi MA, AliA, McMullinMF, et al. Protein tyrosine phosphatase receptor type C (PTPRC or CD45)[J]. J Clin Pathol,2021,74(9):548-552. DOI: 10.1136/jclinpath-2020-206927.
    [20]
    HollandDB, JeremyAH, RobertsSG, et al. Inflammation in acne scarring: a comparison of the responses in lesions from patients prone and not prone to scar[J]. Br J Dermatol, 2004,150(1):72-81. DOI: 10.1111/j.1365-2133.2004.05749.x.
    [21]
    ChenZ, ZhouL, WonT, et al. Characterization of CD45RO+ memory T lymphocytes in keloid disease[J]. Br J Dermatol, 2018,178(4):940-950. DOI: 10.1111/bjd.16173.
    [22]
    RoweM, HildrethJE, RickinsonAB, et al. Monoclonal antibodies to Epstein-Barr virus-induced, transformation-associated cell surface antigens: binding patterns and effect upon virus-specific T-cell cytotoxicity[J]. Int J Cancer, 1982,29(4):373-381. DOI: 10.1002/ijc.2910290403.
    [23]
    樊华, 贺强. CD39与调节性T细胞的研究进展[J/CD].中华临床医师杂志(电子版),2013,7(17):125-126. DOI: 10.3877/cma.j.issn.1674-0785.2013.17.057.
    [24]
    FerrariD, GambariR, IdzkoM, et al. Purinergic signaling in scarring[J]. FASEB J, 2016,30(1):3-12. DOI: 10.1096/fj.15-274563.
    [25]
    EltzschigHK, SitkovskyMV, RobsonSC. Purinergic signaling during inflammation[J]. N Engl J Med, 2012,367(24):2322-2333. DOI: 10.1056/NEJMra1205750.
    [26]
    FernándezP, Perez-AsoM, SmithG, et al. Extracellular generation of adenosine by the ectonucleotidases CD39 and CD73 promotes dermal fibrosis[J]. Am J Pathol, 2013,183(6):1740-1746. DOI: 10.1016/j.ajpath.2013.08.024.
    [27]
    HuangX, GuS, LiuC, et al. CD39+ fibroblasts enhance myofibroblast activation by promoting IL-11 secretion in hypertrophic scars[J]. J Invest Dermatol, 2022,142(4):1065-1076.e19. DOI: 10.1016/j.jid.2021.07.181.
    [28]
    ChenY, JinQ, FuX, et al. Connection between T regulatory cell enrichment and collagen deposition in keloid[J]. Exp Cell Res, 2019,383(2):111549. DOI: 10.1016/j.yexcr.2019.111549.
    [29]
    KnoedlerS, KnoedlerL, Kauke-NavarroM, et al. Regulatory T cells in skin regeneration and wound healing[J]. Mil Med Res, 2023,10(1):49. DOI: 10.1186/s40779-023-00484-6.
  • Relative Articles

    [1]Dai Zhanzhan, Zhu Qin, Tong Xirui, Ma Bing, Xia Zhaofan, Fang He. Two-sample Mendelian randomization analysis of the causal relationship between human inhalation injury and circulating inflammatory proteins[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(11): 1043-1051. doi: 10.3760/cma.j.cn501225-20240429-00155
    [2]Chen Wentao, Wang Xiaoxiang, Zheng Wenlian, Zhang Weiqiang, Mao Lujia, Zhuo Jianan, Zhou Sitong, Yang Ronghua. Exploring the causality between intestinal flora and hyperplastic scars of human based on two-sample Mendelian randomization analysis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(4): 333-341. doi: 10.3760/cma.j.cn501225-20231129-00215
    [3]Meng Yanbin, Lei Jin, Zhang Hairui, Hao Zhenming, Bai Peiyi, Duan Peng. Clinical effects of in situ perforation of preserved split scar matrix in combination with scalp transplantation and vacuum sealing drainage in the treatment of hypertrophic scar in non-functional sites after burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(3): 251-255. doi: 10.3760/cma.j.cn501120-20201201-00510
    [4]Chen Zuhan, Yu Bin, Ye Qifa, Wang Yanfeng. Research advances on interleukin-6 in hypertrophic scar formation[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(9): 874-877. doi: 10.3760/cma.j.cn501120-20210331-00111
    [5]Wang Hongtao, Han Juntao, Hu Dahai. Research advances on the role and mechanism of inflammatory response in the formation of hypertrophic scars and keloids[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(5): 490-494. doi: 10.3760/cma.j.cn501120-20200310-00143
    [6]Sun Jin, Shi Chenshuo, Wang Dali. Research advances on the roles of exosomes derived from mesenchymal stem cells in wound healing and prevention and treatment of hypertrophic scars[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(5): 495-500. doi: 10.3760/cma.j.cn501120-20200410-00220
    [7]Li Na, Yang Li, Cheng Jing, Han Juntao, Hu Dahai. Clinical comparative study of pulsed dye laser and ultra-pulsed fractional carbon dioxide laser in the treatment of hypertrophic scars after burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(9): 603-607. doi: 10.3760/cma.j.issn.1009-2587.2018.09.009
    [8]Song Chenlu, Yao Min. Advances in the research of relationship between CD26 and hypertrophic scar and keloid[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(1): 54-56. doi: 10.3760/cma.j.issn.1009-2587.2018.01.011
    [9]Cai Jianhua, Deng Huping, Shen Chuan′an, Sun Tianjun, Li Dongjie, Li Dawei, He Lixia, Wang Liang, Jin Xiu. Effects of scar excision combined with negative-pressure on repair of hypertrophic scar in burn children[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(7): 410-414. doi: 10.3760/cma.j.issn.1009-2587.2017.07.003
    [10]TAN Jia, FU Jin-Feng. Effects of pressure therapy on the proliferation and apoptosis of cells in hypertrophic scar of burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(6): 509-515. doi: 10.3760/cma.j.issn.1009-2587.2013.06.003
    [11]XIE You-fu, ZHANG Jun-cheng, LIU Si-jun, DAI Li-bing, DU Gao-wei. Effect of melatonin on proliferation and apoptosis of fibroblasts in human hypertrophic scar[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2011, 27(6): 422-426. doi: 10.3760/cma.j.issn.1009-2587.2011.06.005
    [13]LI Xiao- wei, LIU Jian-jun, WU Ji-xiang, CHEN De-ying. The expression of lefty portein in adult normal skin, human embryonic skin and hyperplastic scar[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(1): 45-47.
    [14]YAO Heng, LI Shi-rong, LIU Jian-yi, LI Zhe, WU Jun. Efffects of Panax notogin seng on the transdifferentiation of fibroblasts in human hypertrophic scar in vitro[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(3): 188-190.
    [15]QI Sbao- bai, XU Ying-bin, BIAN Hui-ning, LIU Po, XIE Ju-lin, HE Jie-hua, SHU Bin, LI Tian-zeng. Effects of citrus reticulata blanco extract on fibroblasts from human hypertrophic scar in vitro[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(4): 269-272.
    [16]YUE Yi-gang, JIANG Chang-wen, LI Pei-ying, ZHOU Si. Influence of the VEGF antibody targeted vascular therapy on the expression of collagen type Ⅰ in hyperplastic scar[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(6): 427-430.
    [17]LIANG Zhi, XIE Cheng-yu, LIN Hai-bo, GUO Zheng-dong, YANG Wei-guo. Pathomorphological observation of the hypertrophic scar induced by injury to conical structure in female red Duroc pig[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(1): 29-32.
    [18]CHEN Liang, LIU Sha, LI Shi-rong, CONG Lin, WU Ju-long, WANG Zhen-xiang. Influence of substance P on the release of histamine in the human hypertrophic sear tissue[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(3): 192-194.
    [19]LI Zong-yu, SU Hai-tao, LU Shu-liang, HUANG Li-bin, YANG Xin-bo, SHAO Tie-bin, LI Yi-shu, QU Bin, WANG Cheng-gang, ZHANG Xiu-ying, YANG Shao-feng, SUN Jia-xin, XU Bing-zhou, SUN Man, XIANG Jun. Clinical study on the relationship among the dermis, fat dome and postburn hyperplastic scar formation[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(6): 343-346.
    [20]HE Xiao-jie, HAN Chun-mao. Study on the expression of tenascin-C in keloid and hyperplastic scar[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(2): 79-81.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 37.3 %FULLTEXT: 37.3 %META: 57.7 %META: 57.7 %PDF: 4.9 %PDF: 4.9 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 4.6 %其他: 4.6 %其他: 1.0 %其他: 1.0 %China: 0.3 %China: 0.3 %Tiruchi: 0.5 %Tiruchi: 0.5 %上海: 1.9 %上海: 1.9 %东京: 0.2 %东京: 0.2 %东莞: 1.6 %东莞: 1.6 %伦敦: 0.5 %伦敦: 0.5 %佛山: 0.2 %佛山: 0.2 %保定: 0.5 %保定: 0.5 %六安: 0.3 %六安: 0.3 %兰州: 1.1 %兰州: 1.1 %北京: 3.3 %北京: 3.3 %十堰: 0.2 %十堰: 0.2 %南京: 5.6 %南京: 5.6 %南宁: 0.3 %南宁: 0.3 %南昌: 0.3 %南昌: 0.3 %咸阳: 0.5 %咸阳: 0.5 %哈尔滨: 0.2 %哈尔滨: 0.2 %哥伦布: 0.2 %哥伦布: 0.2 %圣安东尼奥: 0.3 %圣安东尼奥: 0.3 %大庆: 0.2 %大庆: 0.2 %天津: 1.1 %天津: 1.1 %太原: 0.2 %太原: 0.2 %宁波: 0.3 %宁波: 0.3 %安康: 0.6 %安康: 0.6 %常州: 0.2 %常州: 0.2 %广州: 1.6 %广州: 1.6 %张家口: 1.9 %张家口: 1.9 %徐州: 1.1 %徐州: 1.1 %成都: 0.2 %成都: 0.2 %扬州: 0.3 %扬州: 0.3 %昆明: 1.0 %昆明: 1.0 %杭州: 1.8 %杭州: 1.8 %柳州: 0.2 %柳州: 0.2 %梧州: 0.3 %梧州: 0.3 %武汉: 0.2 %武汉: 0.2 %沈阳: 0.3 %沈阳: 0.3 %洛阳: 0.5 %洛阳: 0.5 %济南: 0.5 %济南: 0.5 %济宁: 0.2 %济宁: 0.2 %海得拉巴: 0.5 %海得拉巴: 0.5 %深圳: 0.6 %深圳: 0.6 %温州: 0.5 %温州: 0.5 %湖州: 0.3 %湖州: 0.3 %湛江: 4.3 %湛江: 4.3 %漯河: 1.1 %漯河: 1.1 %石家庄: 0.3 %石家庄: 0.3 %福州: 1.9 %福州: 1.9 %艾奥瓦城: 0.2 %艾奥瓦城: 0.2 %芒廷维尤: 32.2 %芒廷维尤: 32.2 %芝加哥: 2.1 %芝加哥: 2.1 %苏州: 1.1 %苏州: 1.1 %蚌埠: 0.2 %蚌埠: 0.2 %西宁: 1.0 %西宁: 1.0 %西安: 2.2 %西安: 2.2 %贵阳: 0.2 %贵阳: 0.2 %赣州: 0.2 %赣州: 0.2 %遵义: 0.5 %遵义: 0.5 %郑州: 1.8 %郑州: 1.8 %重庆: 4.9 %重庆: 4.9 %长春: 0.6 %长春: 0.6 %长沙: 5.9 %长沙: 5.9 %青岛: 1.6 %青岛: 1.6 %其他其他ChinaTiruchi上海东京东莞伦敦佛山保定六安兰州北京十堰南京南宁南昌咸阳哈尔滨哥伦布圣安东尼奥大庆天津太原宁波安康常州广州张家口徐州成都扬州昆明杭州柳州梧州武汉沈阳洛阳济南济宁海得拉巴深圳温州湖州湛江漯河石家庄福州艾奥瓦城芒廷维尤芝加哥苏州蚌埠西宁西安贵阳赣州遵义郑州重庆长春长沙青岛

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (361) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return