Citation: | Xia CD,Yang Y.Strategies for the treatment and prevention of radiation-induced skin ulcers[J].Chin J Burns Wounds,2024,40(8):719-724.DOI: 10.3760/cma.j.cn501225-20240415-00134. |
[1] |
ChanRJ, WebsterJ, ChungB, et al. Prevention and treatment of acute radiation-induced skin reactions: a systematic review and meta-analysis of randomized controlled trials[J]. BMC Cancer, 2014,14:53. DOI: 10.1186/1471-2407-14-53.
|
[2] |
WakamoriS, TaguchiK, NakayamaY, et al. Nrf2 protects against radiation-induced oral mucositis via antioxidation and keratin layer thickening[J]. Free Radic Biol Med, 2022,188:206-220. DOI: 10.1016/j.freeradbiomed.2022.06.239.
|
[3] |
WijerathneH, LangstonJC, YangQ, et al. Mechanisms of radiation-induced endothelium damage: emerging models and technologies[J]. Radiother Oncol, 2021,158:21-32. DOI: 10.1016/j.radonc.2021.02.007.
|
[4] |
OlascoagaA, Vilar-CompteD, Poitevin-ChacónA, et al. Wound healing in radiated skin: pathophysiology and treatment options[J]. Int Wound J, 2008,5(2):246-257. DOI: 10.1111/j.1742-481X.2008.00436.x.
|
[5] |
ChenW, WangY, ZhengJ, et al. Characterization of cellular senescence in radiation ulcers and therapeutic effects of mesenchymal stem cell-derived conditioned medium[J/OL]. Burns Trauma, 2023,11:tkad001[2024-04-14]. https://pubmed.ncbi.nlm.nih.gov/37188110/.DOI: 10.1093/burnst/tkad001.
|
[6] |
ZhangY, XuJ, LiuS, et al. Embryonic stem cell-derived extracellular vesicles enhance the therapeutic effect of mesenchymal stem cells[J]. Theranostics, 2019,9(23):6976-6990. DOI: 10.7150/thno.35305.
|
[7] |
LiuN, MatsumuraH, KatoT, et al. Stem cell competition orchestrates skin homeostasis and ageing[J]. Nature, 2019,568(7752):344-350. DOI: 10.1038/s41586-019-1085-7.
|
[8] |
KawamoriJ, ItazawaT, FukushimaS, et al. Effect of heparinoid moisturizer on quality of life in patients with acute radiation skin damage following hypofractionated radiation therapy after breast-conserving surgery: a randomized controlled study[J]. Breast Cancer (Dove Med Press), 2021,13:743-753. DOI: 10.2147/BCTT.S347136.
|
[9] |
杨飞, 谢卫国, 张伟, 等. 放射性皮肤溃疡严重程度分型及临床治疗分析[J]. 组织工程与重建外科杂志, 2022, 18(1): 62-66. DOI: 10.3969/j.issn.1673-0364.2022.01.015.
|
[10] |
JiangX, WeiJ, ZhaoQ, et al. Sulforaphane attenuates radiation-induced skin damage by regulating the effects of anti-inflammation and anti-oxidation[J]. Int J Radiat Oncol Biol Phys, 2019, 105(1S):e659-e660. DOI: 10.3390/antiox10111850.
|
[11] |
SahDK, RaiY, ChauhanA, et al. Sphingosine kinase inhibitor, SKI-Ⅱ confers protection against the ionizing radiation by maintaining redox homeostasis most likely through Nrf2 signaling[J]. Life Sci, 2021,278:119543. DOI: 10.1016/j.lfs.2021.119543.
|
[12] |
ChenN, QuanY, ChenM, et al. Melanocortin/MC5R axis regulates the proliferation of hematopoietic stem cells in mice after ionizing radiation injury[J]. Blood Adv, 2023,7(13):3199-3212. DOI: 10.1182/bloodadvances.2022009249.
|
[13] |
AdemS, Diaz DeleonNM, ChenK, et al. Transdermal deferoxamine reduces radiation-induced damage in porcine skin[J]. J Am Coll Surg, 2020, 231(4): e46-e47. DOI: 10.1016/j.jamcollsurg.2020.08.114.
|
[14] |
MaL, ChenY, GongQ, et al. Cold atmospheric plasma alleviates radiation-induced skin injury by suppressing inflammation and promoting repair[J]. Free Radic Biol Med, 2023,204:184-194. DOI: 10.1016/j.freeradbiomed.2023.05.002.
|
[15] |
OrtegaMA, Fraile-MartinezO, García-MonteroC, et al. A general overview on the hyperbaric oxygen therapy: applications, mechanisms and translational opportunities[J]. Medicina (Kaunas), 2021, 57(9):864. DOI: 10.3390/medicina57090864.
|
[16] |
LongobardiP, HartwigV, SantarellaL, et al. Potential markers of healing from near infrared spectroscopy imaging of venous leg ulcer. A randomized controlled clinical trial comparing conventional with hyperbaric oxygen treatment[J]. Wound Repair Regen, 2020,28(6):856-866. DOI: 10.1111/wrr.12853.
|
[17] |
FadolEM, SulimanHM, OsmanB, et al. Therapeutic outcomes evaluation of adjuvant hyperbaric oxygen therapy for non-healing diabetic foot ulcers among sudanese patients[J]. Diabetes Metab Syndr, 2021,15(4):102173. DOI: 10.1016/j.dsx.2021.06.010.
|
[18] |
MemarMY, YekaniM, AlizadehN, et al. Hyperbaric oxygen therapy: antimicrobial mechanisms and clinical application for infections[J]. Biomed Pharmacother, 2019,109:440-447. DOI: 10.1016/j.biopha.2018.10.142.
|
[19] |
Englisz-JurgielewiczB, CholewkaA, FirganekE, et al. Evaluation of hyperbaric oxygen therapy effects in hard-to-heal wounds using thermal imaging and planimetry[J]. J Therm Anal Calorim, 2020, 141(4): 1465-1475. DOI: 10.1007/s10973-019-09129-0.
|
[20] |
DongW, ZhangX, LuoX, et al. Regional flap: a reliable coverage for post-radiation ulcer[J]. Int Wound J, 2023,20(6):2224-2232. DOI: 10.1111/iwj.14103.
|
[21] |
夏成德, 狄海萍, 邢培朋, 等. 游离股前外侧皮瓣修复烧伤后小腿环形大面积软组织缺损的临床效果[J].中华烧伤杂志,2019,35(4):248-252. DOI: 10.3760/cma.j.issn.1009-2587.2019.04.003.
|
[22] |
SơnTT, ThúyT, DungP, et al. Reconstruction of the thoracic radiation-induced ulcer with the pedicled internal mammary artery fasciocutaneous flap: review of the literature and a case report[J]. JPRAS Open, 2023,37:102-108. DOI: 10.1016/j.jpra.2023.06.007.
|
[23] |
YangP, CaoF, ChenT, et al. Treatment of recurrent radiation ulcer of chest wall with a pedicled latissimus dorsi flap: a case report[J]. Asian J Surg, 2023,46(10):4591-4592. DOI: 10.1016/j.asjsur.2023.05.028.
|
[24] |
NakanishiT, KuwaharaM, SasakiC, et al. A radiation ulcer that required partial lung resection and recurred in a small residual area of ectopic calcification[J]. Int J Surg Case Rep, 2021,85:106201. DOI: 10.1016/j.ijscr.2021.106201.
|
[25] |
刘志燕,饶振,盛小伍,等. 脂肪干细胞对大鼠急性放射性皮肤损伤的干预作用[J]. 中南大学学报(医学版), 2019,44(2):150-157. DOI: 10.11817/j.issn.1672-7347.2019.02.006.
|
[26] |
BaeYU, SonY, KimCH, et al. Embryonic stem cell-derived mmu-miR-291a-3p inhibits cellular senescence in human dermal fibroblasts through the TGF-β receptor 2 pathway[J]. J Gerontol A Biol Sci Med Sci, 2019,74(9):1359-1367. DOI: 10.1093/gerona/gly208.
|
[27] |
LiuZ, YuD, XuJ, et al. Human umbilical cord mesenchymal stem cells improve irradiation-induced skin ulcers healing of rat models[J]. Biomed Pharmacother, 2018,101:729-736. DOI: 10.1016/j.biopha.2018.02.093.
|
[28] |
GaoS, ChenT, HaoY, et al. Exosomal miR-135a derived from human amnion mesenchymal stem cells promotes cutaneous wound healing in rats and fibroblast migration by directly inhibiting LATS2 expression[J]. Stem Cell Res Ther, 2020,11(1):56. DOI: 10.1186/s13287-020-1570-9.
|
[29] |
ZuoR, LiuM, WangY, et al. BM-MSC-derived exosomes alleviate radiation-induced bone loss by restoring the function of recipient BM-MSCs and activating Wnt/β-catenin signaling[J]. Stem Cell Res Ther, 2019,10(1):30. DOI: 10.1186/s13287-018-1121-9.
|
[30] |
GanF, WangR, LyuP, et al. Plasma-derived exosomes boost the healing of irradiated wound by regulating cell proliferation and ferroptosis[J]. J Biomed Nanotechnol, 2021,17(1):100-114. DOI: 10.1166/jbn.2021.3008.
|
[31] |
HuS, LiZ, CoresJ, et al. Needle-free injection of exosomes derived from human dermal fibroblast spheroids ameliorates skin photoaging[J]. ACS Nano, 2019,13(10):11273-11282. DOI: 10.1021/acsnano.9b04384.
|
[32] |
LiangJX, LiaoX, LiSH, et al. Antiaging properties of exosomes from adipose-derived mesenchymal stem cells in photoaged rat skin[J]. Biomed Res Int, 2020,2020:6406395. DOI: 10.1155/2020/6406395.
|
[33] |
DaiS, WenY, LuoP, et al. Therapeutic implications of exosomes in the treatment of radiation injury[J/OL]. Burns Trauma, 2022,10:tkab043[2024-04-15]. https://pubmed.ncbi.nlm.nih.gov/35071650/. DOI: 10.1093/burnst/tkab043.
|
[34] |
DuW, ZhangK, ZhangS, et al. Enhanced proangiogenic potential of mesenchymal stem cell-derived exosomes stimulated by a nitric oxide releasing polymer[J]. Biomaterials, 2017,133:70-81. DOI: 10.1016/j.biomaterials.2017.04.030.
|
[35] |
FukubaM, UozakiH, KomuroY. Effectiveness of the combination of fat grafting and injection on radiation ulcer healing[J]. J Plast Surg Hand Surg, 2020,54(1):24-28. DOI: 10.1080/2000656X.2019.1657436.
|
[36] |
XuD, SongD, TaoY, et al. External Chinese medicine treatment for skin injury of patients in radiotherapy[J]. Journal of Radiation Research and Applied Sciences, 2024, 17(1): 100819. DOI: 10.1016/j.jrras.2024.100819.
|
[37] |
WuS, YangK, HongY, et al. A new perspective on the antimicrobial mechanism of berberine hydrochloride against Staphylococcus aureus revealed by untargeted metabolomic studies[J]. Front Microbiol, 2022,13:917414. DOI: 10.3389/fmicb.2022.917414.
|
[38] |
LiGH, ZhangYP, TangJL, et al. Effects of berberine against radiation-induced intestinal injury in mice[J]. Int J Radiat Oncol Biol Phys, 2010,77(5):1536-1544. DOI: 10.1016/j.ijrobp.2010.02.062.
|
[39] |
ZhouP, LinB, WangP, et al. The healing effect of hydrogen-rich water on acute radiation-induced skin injury in rats[J]. J Radiat Res, 2019,60(1):17-22. DOI: 10.1093/jrr/rry074.
|
[40] |
LeeJ, JangH, ParkS, et al. Platelet-rich plasma activates AKT signaling to promote wound healing in a mouse model of radiation-induced skin injury[J]. J Transl Med, 2019,17(1):295. DOI: 10.1186/s12967-019-2044-7.
|
[41] |
邹妮倩, 林毅, 汪真辉, 等. 土黄连外洗液对乳腺癌急性放射性皮炎的疗效观察[J].中医肿瘤学杂志,2022,4(5):17-22. DOI: 10.19811/j.cnki.ISSN2096-6628.2022.09.004.
|
[42] |
KamranMZ, RanjanA, KaurN, et al. Radioprotective agents: strategies and translational advances[J]. Med Res Rev, 2016,36(3):461-493. DOI: 10.1002/med.21386.
|