[1] |
XuZ, HanS, GuZ, et al. Advances and impact of antioxidant hydrogel in chronic wound healing[J]. Adv Healthc Mater, 2020, 9(5): e1901502. DOI: 10.1002/adhm.201901502.
|
[2] |
WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223. DOI: 10.1098/rsob.200223.
|
[3] |
PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro?[J]. Cells, 2020, 9(7):1622. DOI: 10.3390/cells9071622.
|
[4] |
罗高兴, 吴军. 现代功能材料促进皮肤创面修复[J]. 中华烧伤杂志, 2020, 36(12): 1113-1116. DOI: 10.3760/cma.j.cn501120-20201015-00436
|
[5] |
FranceskoA, PetkovaP, TzanovT. Hydrogel dressings for advanced wound management[J]. Curr Med Chem, 2018, 25(41): 5782-5797. DOI: 10.2174/0929867324666170920161246.
|
[6] |
Van Den Bulcke AI, BogdanovB, De RoozeN, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels[J]. Biomacromolecules, 2000, 1(1): 31-38. DOI: 10.1021/bm990017d.
|
[7] |
LiuY, Chan-ParkMB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture[J]. Biomaterials, 2010, 31(6): 1158-1170. DOI: 10.1016/j.biomaterials.2009.10.040.
|
[8] |
Van den SteenPE, DuboisB, NelissenI, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)[J]. Crit Rev Biochem Mol Biol, 2002, 37(6): 375-536. DOI: 10.1080/10409230290771546.
|
[9] |
LiuY, LiZ, LiJ, et al. Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels[J/OL]. Burns Trauma,2020,8:tkaa029[2022-07-31]. https://pubmed.ncbi.nlm.nih.gov/32733974/.DOI: 10.1093/burnst/tkaa029.
|
[10] |
YueK, Trujillo-de SantiagoG, AlvarezMM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271. DOI: 10.1016/j.biomaterials.2015.08.045.
|
[11] |
ChenYC, LinRZ, QiH, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels[J]. Adv Funct Mater, 2012, 22(10): 2027-2039. DOI: 10.1002/adfm.201101662.
|
[12] |
VlierbergheSV, CnuddeV, DubruelP, et al. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis[J]. Biomacromolecules, 2007, 8(2): 331-337. DOI: 10.1021/bm060684o.
|
[13] |
DubruelP, UngerR, VlierbergheSV, et al. Porous gelatin hydrogels: 2. In vitro cell interaction study[J]. Biomacromolecules, 2007, 8(2): 338-344. DOI: 10.1021/bm0606869.
|
[14] |
BoereKW, VisserJ, SeyednejadH, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs[J]. Acta Biomater, 2014, 10(6): 2602-2611. DOI: 10.1016/j.actbio.2014.02.041.
|
[15] |
NguyenAH, McKinneyJ, MillerT, et al. Gelatin methacrylate microspheres for controlled growth factor release[J]. Acta Biomater, 2015, 13: 101-110. DOI: 10.1016/j.actbio.2014.11.028
|
[16] |
DaikuaraLY, YueZ, SkropetaD, et al. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering[J]. Acta Biomater, 2021, 123: 286-297. DOI: 10.1016/j.actbio.2021.01.021.
|
[17] |
BornLJ, McLoughlinST, DuttaD, et al. Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-print ed gelatin methacrylate hydrogels[J]. J Biomed Mater Res A, 2022,110(6):1190-1198. DOI: 10.1002/jbm.a.37362.
|
[18] |
HuP, YangQ, WangQ, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL]. Burns Trauma, 2019, 7: 38[2022-03-08].https://pubmed.ncbi.nlm.nih.gov/32640572/. DOI: 10.1186/s41038-019-0178-8.
|
[19] |
ZhaoD, YuZ, LiY, et al. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration[J]. J Mol Histol, 2020, 51(3): 251-263. DOI: 10.1007/s10735-020-09877-6.
|
[20] |
GuanG, LvQ, LiuS, et al. 3D-bioprinted peptide coupling patches for wound healing[J]. Mater Today Bio, 2022, 13: 100188. DOI: 10.1016/j.mtbio.2021.100188.
|
[21] |
SalehB, DhaliwalHK, Portillo-LaraR, et al. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing[J]. Small, 2019, 15(36): e1902232. DOI: 10.1002/smll.201902232.
|
[22] |
SchuurmanW, LevettPA, PotMW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs[J]. Macromol Biosci, 2013, 13(5): 551-561. DOI: 10.1002/mabi.201200471.
|
[23] |
ChenCS, ZengF, XiaoX, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds[J]. ACS Appl Mater Interfaces, 2018, 10(40): 33879-33890. DOI: 10.1021/acsami.8b10072.
|
[24] |
KurianAG, SinghRK, PatelKD, et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J]. Bioact Mater, 2022, 8: 267-295. DOI: 10.1016/j.bioactmat.2021.06.027.
|
[25] |
NuutilaK, SamandariM, EndoY, et al. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing[J]. Bioact Mater, 2022, 8: 296-308. DOI: 10.1016/j.bioactmat.2021.06.030.
|
[26] |
QuW, WangZ, HuntC, et al. The effectiveness and safety of platelet-rich plasma for chronic wounds: a systematic review and meta-analysis[J]. Mayo Clin Proc, 2021, 96(9): 2407-2417. DOI: 10.1016/j.mayocp.2021.01.030.
|
[27] |
QianZ, WangH, BaiY, et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55659-55674. DOI: 10.1021/acsami.0c17142.
|
[28] |
KimM, RheeJ K, ChoiH, et al. Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing[J]. Sci Rep, 2017, 7(1): 14508. DOI: 10.1038/s41598-017-15155-5.
|
[29] |
YoonDS, LeeY, RyuHA, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing[J]. Acta Biomater, 2016, 38: 59-68. DOI: 10.1016/j.actbio.2016.04.030.
|
[30] |
ZhuJ, LiuZ, WangL, et al. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins[J]. Front Bioeng Biotechnol, 2022, 10: 866505. DOI: 10.3389/fbioe.2022.866505.
|
[31] |
YuanM, LiuK, JiangT, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing[J]. J Nanobiotechnology, 2022, 20(1): 147. DOI: 10.1186/s12951-022-01354-4.
|
[32] |
HeJ, ShiM, LiangY, et al. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds[J]. Chem Eng J, 2020, 394. DOI: 10.1016/j.cej.2020.124888.
|
[33] |
LiuBC, WangY, MiaoY, et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin[J]. Biomaterials, 2018, 171: 83-96. DOI: 10.1016/j.biomaterials.2018.04.023.
|
[34] |
LiuY, WangQ, LiuX, et al. Highly adhesive, stretchable and breathable gelatin methacryloyl-based nanofibrous hydrogels for wound dressings[J]. ACS Appl Bio Mater, 2022, 5(3): 1047-1056. DOI: 10.1021/acsabm.1c01087.
|
[35] |
JahanI, GeorgeE, SaxenaN, et al. Silver-nanoparticle-entrapped soft GelMA gels as prospective scaffolds for wound healing[J]. ACS Appl Bio Mater, 2019, 2(5): 1802-1814. DOI: 10.1021/acsabm.8b00663.
|
[36] |
AugustineR, ZahidAA, HasanA, et al. Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity[J]. ACS Biomater Sci Eng, 2021, 7(1): 279-290. DOI: 10.1021/acsbiomaterials.0c01138.
|
[37] |
RajabiN, KharazihaM, EmadiR, et al. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant[J]. J Colloid Interface Sci, 2020, 564: 155-169. DOI: 10.1016/j.jcis.2019.12.048.
|
[38] |
RehmanSRU, AugustineR, ZahidAA, et al. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications[J]. Int J Nanomedicine, 2019, 14: 9603-9617. DOI: 10.2147/IJN.S218120.
|
[39] |
Velasco-RodriguezB, Diaz-VidalT, Rosales-RiveraLC, et al. Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications[J]. Int J Mol Sci, 2021, 22(13):6758. DOI: 10.3390/ijms22136758.
|
[40] |
NazirF, AshrafI, IqbalM, et al. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies[J]. Int J Biol Macromol, 2021, 185: 419-433. DOI: 10.1016/j.ijbiomac.2021.06.112.
|
[41] |
KlotzBJ, GawlittaD, RosenbergA, et al. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair[J]. Trends Biotechnol, 2016, 34(5): 394-407. DOI: 10.1016/j.tibtech.2016.01.002.
|
[42] |
GrollJ, BolandT, BlunkT, et al. Biofabrication: reappraising the definition of an evolving field[J]. Biofabrication, 2016, 8(1): 013001. DOI: 10.1088/1758-5090/8/1/013001
|
[43] |
ShiX, OstrovidovS, ZhaoY, et al. Microfluidic spinning of cell-responsive grooved microfibers[J]. Adv Funct Mater, 2015, 25(15): 2250-2259. DOI: 10.1002/adfm.201404531.
|
[44] |
NicholJW, KoshyST, BaeH, et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials, 2010, 31(21): 5536-5544. DOI: 10.1016/j.biomaterials.2010.03.064.
|
[45] |
ChenX, YueZ, WinbergPC, et al. 3D bioprinting dermal-like structures using species-specific ulvan[J]. Biomater Sci, 2021, 9(7): 2424-2438. DOI: 10.1039/d0bm01784a.
|