Volume 37 Issue 12
Dec.  2021
Turn off MathJax
Article Contents
Liu Y.Several problems worthy of attention in non-surgical treatment of scar[J].Chin J Burns,2021,37(12):1194-1198.DOI: 10.3760/cma.j.cn501120-20210705-00235.
Citation: Liu Y.Several problems worthy of attention in non-surgical treatment of scar[J].Chin J Burns,2021,37(12):1194-1198.DOI: 10.3760/cma.j.cn501120-20210705-00235.

Several problems worthy of attention in non-surgical treatment of scar

doi: 10.3760/cma.j.cn501120-20210705-00235
More Information
  • Corresponding author: Liu Yi, Email: liuyi196402@163.com
  • Received Date: 2021-07-05
  • Pathologically, scars are divided into physiological scars and pathological scars, and the latter mainly include hyperplastic scars and keloids. Scar treatment includes surgical treatment and non-surgical treatment, with the pathological scars as the major targets in treatment. Until now, there is no treatment with ideal therapeutic effect. Therefore, new therapeutic methods for pathological scars are still being explored at home and abroad. In recent years, some non-surgical therapeutic methods for scars that have received widespread attention have emerged. In this article, several problems worthy of attention including intralesional injection therapy, photoelectric therapy, and rehabilitation robots were discussed.

     

  • loading
  • [1]
    吴军,唐丹,李曾慧萍.烧伤康复治疗学[M].北京:人民卫生出版社,2015:324-329.
    [2]
    陆树良.把握创面修复的规律和特征促进创面愈合[J].中华烧伤杂志,2021,37(5):401-403.DOI: 10.3760/cma.j.cn501120-20210322-00100.
    [3]
    中国整形美容协会瘢痕医学分会.瘢痕早期治疗全国专家共识(2020版)[J].中华烧伤杂志,2021,37(2):113-125.DOI: 10.3760/cma.j.cn501120-20200609-00300.
    [4]
    BermanB,MaderalA,RaphaelB.Keloids and hypertrophic scars: pathophysiology, classification, and treatment[J].Dermatol Surg,2017,43 Suppl 1:S3-18.DOI: 10.1097/DSS.0000000000000819.
    [5]
    SongM,LiuY,LiuP,et al.A promising tool for surgical lipotransfer: a constant pressure and quantity injection device in facial fat grafting[J/OL].Burns Trauma,2017,5:17 [2021-07-05]. https://pubmed.ncbi.nlm.nih.gov/28573148/. DOI: 10.1186/s41038-017-0077-9.
    [6]
    宋玫,刘毅,汪诤,等.恒压恒量微创颗粒脂肪注射移植装置的研制[J].中国美容整形外科杂志,2014,25(7):405-407.DOI: 10.3969/j.issn.1673-7040.2014.07.008.
    [7]
    YunIS,JeonYR,LeeWJ,et al.Effect of human adipose derived stem cells on scar formation and remodeling in a pig model: a pilot study[J].Dermatol Surg,2012,38(10):1678-1688.DOI: 10.1111/j.1524-4725.2012.02495.x.
    [8]
    StrongAL, GimbleJM, BunnellBA. Analysis of the pro- and anti-inflammatory cytokines secreted by adult stem cells during differentiation[J].Stem Cells Int,2015,2015:412467. DOI: 10.1155/2015/412467.
    [9]
    LiY,ZhangW,GaoJ,et al.Adipose tissue-derived stem cells suppress hypertrophic scar fibrosis via the p38/MAPK signaling pathway[J].Stem Cell Res Ther,2016,7(1):102.DOI: 10.1186/s13287-016-0356-6.
    [10]
    ZhangQ,LiuLN,YongQ,et al.Intralesional injection of adipose-derived stem cells reduces hypertrophic scarring in a rabbit ear model[J].Stem Cell Res Ther,2015,6:145.DOI: 10.1186/s13287-015-0133-y.
    [11]
    LancerottoL,ChinMS,FreniereB,et al.Mechanisms of action of external volume expansion devices[J].Plast Reconstr Surg,2013,132(3):569-578.DOI: 10.1097/PRS.0b013e31829ace30.
    [12]
    BrunoA,Delli SantiG,FascianiL,et al.Burn scar lipofilling: immunohistochemical and clinical outcomes[J].J Craniofac Surg,2013,24(5):1806-1814.DOI: 10.1097/SCS.0b013e3182a148b9.
    [13]
    RiyatH,TouilLL,BriggsM,et al.Autologous fat grafting for scars, healing and pain: a review[J].Scars Burn Heal,2017,3:2059513117728200.DOI: 10.1177/2059513117728200.
    [14]
    JaspersM,BrouwerKM,van TrierA,et al.Sustainable effectiveness of single-treatment autologous fat grafting in adherent scars[J].Wound Repair Regen,2017,25(2):316-319.DOI: 10.1111/wrr.12521.
    [15]
    UlrichD,UlrichF,van DoornL,et al.Lipofilling of perineal and vaginal scars: a new method for improvement of pain after episiotomy and perineal laceration[J].Plast Reconstr Surg,2012,129(3):593e-594e.DOI: 10.1097/PRS.0b013e3182419c2c.
    [16]
    LiSH,WuYD,WuYY,et al.Autologous fat transplantation for the treatment of abdominal wall scar adhesions after cesarean section[J].J Plast Surg Hand Surg,2021,55(4):210-215.DOI: 10.1080/2000656X.2020.1856675.
    [17]
    XuX,LaiL,ZhangX,et al.Autologous chyle fat grafting for the treatment of hypertrophic scars and scar-related conditions[J].Stem Cell Res Ther,2018,9(1):64.DOI: 10.1186/s13287-018-0782-8.
    [18]
    PatelN.Fat injection in severe burn outcomes: a new perspective of scar remodeling and reduction[J].Aesthetic Plast Surg,2008,32(3):470-472.DOI: 10.1007/s00266-008-9120-3.
    [19]
    Kuka EpsteinG,EpsteinJ.Two-stage procedure to correct scalp and facial scars-autologous fat grafting before hair grafting[J].Dermatol Surg,2020,46(9):1262-1264.DOI: 10.1097/DSS.0000000000002107.
    [20]
    JanSN, BashirMM, KhanFA,et al. Unfiltered nanofat injections rejuvenate postburn scars of face[J]. Ann Plast Surg,2019,82(1):28-33. DOI: 10.1097/SAP.0000000000001631.
    [21]
    HuCH,TsengYW,LeeCW,et al.Combination of mesenchymal stem cell-conditioned medium and botulinum toxin type A for treating human hypertrophic scars[J].J Plast Reconstr Aesthet Surg,2020,73(3):516-527.DOI: 10.1016/j.bjps.2019.07.010.
    [22]
    HouZ, FanF, LiuP. BTXA regulates the epithelial-mesenchymal transition and autophagy of keloid fibroblasts via modulating miR-1587/miR-2392 targeted ZEB2[J]. Biosci Rep,2019,39(10):BSR20190679. DOI: 10.1042/BSR20190679.
    [23]
    ZhangX, LanD, NingS, et al. Botulinum toxin type A prevents the phenotypic transformation of fibroblasts induced by TGF-β1 via the PTEN/PI3K/Akt signaling pathway[J].Int J Mol Med,2019,44(2):661-671.DOI: 10.3892/ijmm.2019.4226.
    [24]
    ByunHJ, ParkJH, LeeJH. Combination treatment of intra/perilesional botulinum toxin-a injection and ablative fractional laser for better clinical outcomes of hypertrophic fibrotic thyroidectomy scars following fractional ablative laser resurfacing[J].Ann Dermatol, 2021,33(2):170-177.DOI: 10.5021/ad.2021.33.2.170.
    [25]
    SabryHH, IbrahimEA, HamedAM. Assessment of laser-assisted delivery vs intralesional injection of botulinum toxin A in treatment of hypertrophic scars and keloids[J]. Dermatol Ther,2020,33(6):e13980. DOI: 10.1111/dth.13980.
    [26]
    AlsterTS, LiMKY. Microneedling of scars: a large prospective study with long-term follow-up[J]. Plast Reconstr Surg,2020,145(2):358-364. DOI: 10.1097/PRS.0000000000006462.
    [27]
    ZhouN,LiD,LuoY,et al. Effects of botulinum toxin type A on microvessels in hypertrophic scar models on rabbit ears[J]. Biomed Res Int,2020,2020:2170750. DOI: 10.1155/2020/2170750.
    [28]
    HuangSH, WuKW, LoJJ, et al. Synergic effect of botulinum toxin type-A and triamcinolone alleviates scar pruritus by modulating epidermal hyperinnervation: a preliminary report[J]. Aesthet Surg J,2021, 41(11):NP1721-NP1731. DOI: 10.1093/asj/sjab105.
    [29]
    RahmanSHA, MohamedMS, HamedAM. Efficacy and safety of Nd:YAG laser alone compared with combined Nd:YAG laser with intralesional steroid or botulinum toxin A in the treatment of hypertrophic scars[J].Lasers Med Sci,2021,36(4):837-842.DOI: 10.1007/s10103-020-03120-0.
    [30]
    CaponAC, GosséAR, IarmarcovaiGN, et al. Scar prevention by laser-assisted scar healing (LASH): a pilot study using an 810-nm diode-laser system[J]. Lasers Surg Med, 2008,40(7):443-445. DOI: 10.1002/lsm.20657.
    [31]
    DuF, YuY, ZhouZ, et al. Early treatment using fractional CO2 laser before skin suture during scar revision surgery in Asians[J]. J Cosmet Laser Ther,2018,20(2):102-105. DOI: 10.1080/14764172.2017.1358452.
    [32]
    CohenJL, GeronemusR. Safety and efficacy evaluation of pulsed dye laser treatment, CO2 ablative fractional resurfacing, and combined treatment for surgical scar clearance[J].J Drugs Dermatol,2016,15(11):1315-1319.
    [33]
    刘毅,姜疆.正确把握皮秒激光治疗适应证[J].中国美容整形外科杂志,2020,31(10):577-580.DOI: 10.3969/j.issn.1673-7040.2020.10.002.
    [34]
    ChangM, MaX, OuyangT,et al.Potential molecular mechanisms involved in 5-aminolevulinic acid-based photodynamic therapy against human hypertrophic scars[J]. Plast Reconstr Surg,2015,136(4):715-727. DOI: 10.1097/PRS.0000000000001626.
    [35]
    KarrerS, BosserhoffAK, WeidererP, et al. Keratinocyte-derived cytokines after photodynamic therapy and their paracrine induction of matrix metalloproteinases in fibroblasts[J].Br J Dermatol, 2015, 151(4):776-783.DOI: 10.1111/j.1365-2133.2004.06209.x.
    [36]
    MariW,AlsabriSG, TabalN, et al. Novel insights on understanding of keloid scar: article review[J].J Am Coll Clin Wound Spec, 2016,7(1/2/3):1-7. DOI: 10.1016/j.jccw.2016.10.001.
    [37]
    PolatM, KayaH, ᶊahinA. A new approach in the treatment of keloids: UVA-1 laser[J].Photomed Laser Surg,2016,34(3):130-133. DOI: 10.1089/pho.2015.4046.
    [38]
    HaimovicA, BrauerJA, Cindy BaeYS, et al. Safety of a picosecond laser with diffractive lens array (DLA) in the treatment of Fitzpatrick skin types IV to VI: a retrospective review[J]. J Am Acad Dermatol,2016, 74(5):931-936.DOI: 10.1016/j.jaad.2015.12.010.
    [39]
    LeeJW, KimBJ, KimMN, et al. The efficacy of autologous platelet rich plasma combined with ablative carbon dioxide fractional resurfacing for acne scars: a simultaneous split-face trial[J].Dermatol Surg,2011,37(7):931-938. DOI: 10.1111/j.1524-4725.2011.01999.x.
    [40]
    FosterKW,MoyRL,FincherEF. Advances in plasma skin regeneration[J]. J Cosmet Dermatol, 2008,7(3):169-179. DOI: 10.1111/j.1473-2165.2008.00385.x.
    [41]
    励建安. 人机共融,天人合一——关于康复机器人应用与发展的思考[J]. 中国康复医学杂志,2020,35(8):897-899. DOI: 10.3969/j.issn.1001-1242.2020.08.001.
    [42]
    KsA, SkB, TvjtA, et al. Enhanced Kapandji test evaluation of a soft robotic thumb rehabilitation device by developing a fiber-reinforced elastomer-actuator based 5-digit assist system[J]. Robotics and Autonomous Systems, 2019, 111(1):20-30. DOI: 10.1016/j.robot.2018.09.007.
    [43]
    DasS, KishishitaY, TsujiT, et al. ForceHand glove: a wearable force-feedback glove with pneumatic artificial muscles (PAMs)[J]. IEEE Robotics & Automation Letters, 2018,3(3):2416-2423.DOI: 10.1109/LRA.2018.2813403.
    [44]
    LiuQ, ZuoJ, ZhuC, et al. Design and control of soft rehabilitation robots actuated by pneumatic muscles: state of the art[J]. Future Generation Computer Systems, 2020, 113(6):236-240. DOI: 10.1016/j.future.2020.06.046.
    [45]
    WashabaughEP, TreadwayE, GillespieRB, et al. Self-powered robots to reduce motor slacking during upper-extremity rehabilitation: a proof of concept study[J].Restor Neurol Neurosci, 2018,36(6):693-708.DOI: 10.3233/RNN-180830.
    [46]
    SamhanAF, AbdelhalimNM, ElnaggarRK. Effects of interactive robot-enhanced hand rehabilitation in treatment of paediatric hand-burns: a randomized, controlled trial with 3-months follow-up[J]. Burns, 2020, 46(6):1347-1355.DOI: 10.1016/j.burns.2020.01.015.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (328) PDF downloads(79) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return