Shang NS,Cui BH,Wang C,et al.A prospective randomized controlled study of the application effect of hydrogel dressings on deep partial-thickness burn wounds after dermabrasion and tangential excision[J].Chin J Burns,2021,37(11):1085-1089.DOI: 10.3760/cma.j.cn501120-20210419-00133.
Citation: Cao WB,Gao CY.Research advances on multifunctional hydrogel dressings for treatment of diabetic chronic wounds[J].Chin J Burns,2021,37(11):1090-1098.DOI: 10.3760/cma.j.cn501120-20210715-00249.

Research advances on multifunctional hydrogel dressings for treatment of diabetic chronic wounds

doi: 10.3760/cma.j.cn501120-20210715-00249
Funds:

General Program of National Natural Science Foundation of China 51873188

Natural Science Foundation of Zhejiang Province of China LD21E030001

More Information
  • Corresponding author: Gao Changyou, Email: cygao@zju.edu.cn
  • Received Date: 2021-07-15
  • Diabetes can lead to a variety of complications, such as chronic wound (diabetic foot), which is one of the important causes of death for patients with diabetes. Unfavorable factors such as high blood glucose, high level of oxidative stress and inflammation, and susceptibility to infection lead to difficult healing and even worsening of diabetic chronic wounds. Due to the advantages of high water content, good biocompatibility, and tunable physicochemical properties, the hydrogels have become hot-spot materials in wound dressing research. Compared with the traditional dressings such as gauze, the hydrogel dressings can provide a moist environment that is beneficial for wound healing. By loading of bioactive components and modulation of compositions and structures of hydrogels, the hydrogel dressings can be endowed with excellent tissue adhesion, antibacterial ability, anti-oxidation, and inflammation regulation effect, etc., and thus show great prospects in wound dressing applications. Based on the characteristics of hydrogel materials and microenvironment of diabetic chronic wound, this review summarized the research advances on new multifunctional hydrogel dressings for the treatment of diabetic chronic wounds in recent years, and discussed the drawbacks of current hydrogel dressings with prospects proposed.

     

  • [1]
    中华医学会糖尿病学分会.中国2型糖尿病防治指南(2020年版)[J].中华糖尿病杂志,2021,13(4):315-409.DOI: 10.3760/cma.j.cn115791-20210221-00095.
    [2]
    中华医学会糖尿病学分会.中国2型糖尿病防治指南(2017年版)[J].中国实用内科杂志,2018,38(4):292-344.DOI: 10.19538/j.nk2018040108.
    [3]
    ArmstrongDG,BoultonAJM,BusSA.Diabetic foot ulcers and their recurrence[J].N Engl J Med,2017,376(24):2367-2375.DOI: 10.1056/NEJMra1615439.
    [4]
    HallC,HardinC,CorkinsCJ,et al.Pathophysiologic mechanisms and current treatments for cutaneous sequelae of burn wounds[J].Compr Physiol,2017,8(1):371-405.DOI: 10.1002/cphy.c170016.
    [5]
    EmingSA,MartinP,Tomic-CanicM.Wound repair and regeneration: mechanisms, signaling, and translation[J].Sci Transl Med,2014,6(265):265sr6.DOI: 10.1126/scitranslmed.3009337.
    [6]
    KarriVV,KuppusamyG,TalluriSV,et al.Current and emerging therapies in the management of diabetic foot ulcers[J].Curr Med Res Opin,2016,32(3):519-542.DOI: 10.1185/03007995.2015.1128888.
    [7]
    NegutI,GrumezescuV,GrumezescuAM.Treatment strategies for infected wounds[J].Molecules,2018,23(9):2392.DOI: 10.3390/molecules23092392.
    [8]
    LipskyBA,BerendtAR,CorniaPB,et al.2012 Infectious Diseases Society of America clinical practice guideline for the diagnosis and treatment of diabetic foot infections[J].Clin Infect Dis,2012,54(12):e132-173.DOI: 10.1093/cid/cis346.
    [9]
    EverettE,MathioudakisN.Update on management of diabetic foot ulcers[J].Ann N Y Acad Sci,2018,1411(1):153-165.DOI: 10.1111/nyas.13569.
    [10]
    de SmetG,KroeseLF,MenonAG,et al.Oxygen therapies and their effects on wound healing[J].Wound Repair Regen,2017,25(4):591-608.DOI: 10.1111/wrr.12561.
    [11]
    MurrayRZ,WestZE,CowinAJ,et al.Development and use of biomaterials as wound healing therapies[J/OL].Burns Trauma,2019,7:2[2021-07-15]. https://academic.oup.com/burnstrauma/article/doi/ 10.1186/s41038-018-0139-7/5685924.DOI: 10.1186/s41038-018-0139-7.
    [12]
    HussainZ,ThuHE,ShuidAN,et al.Recent advances in polymer-based wound dressings for the treatment of diabetic foot ulcer: an overview of state-of-the-art[J].Curr Drug Targets,2018,19(5):527-550.DOI: 10.2174/1389450118666170704132523.
    [13]
    ShiCY,WangCY,LiuH,et al.Selection of appropriate wound dressing for various wounds[J].Front Bioeng Biotechnol,2020,8:182.DOI: 10.3389/fbioe.2020.00182.
    [14]
    WellerCD,TeamV,SussmanG.First-line interactive wound dressing update: a comprehensive review of the evidence[J].Front Pharmacol,2020,11:155.DOI: 10.3389/fphar.2020.00155.
    [15]
    MatooriS,VevesA,MooneyDJ.Advanced bandages for diabetic wound healing[J].Sci Transl Med,2021,13(585):e4839.DOI: 10.1126/scitranslmed.abe4839.
    [16]
    ZhangYS,KhademhosseiniA.Advances in engineering hydrogels[J]. Science,2017,356(6337):eaaf3627.DOI: 10.1126/science.aaf3627.
    [17]
    TuYJ,ChenN,LiCP,et al.Advances in injectable self-healing biomedical hydrogels[J].Acta Biomater,2019,90:1-20.DOI: 10.1016/j.actbio.2019.03.057.
    [18]
    WangHN,XuZJ,ZhaoM,et al.Advances of hydrogel dressings in diabetic wounds[J].Biomater Sci,2021,9(5):1530-1546.DOI: 10.1039/d0bm01747g.
    [19]
    AhmadS,KhanH,SiddiquiZ,et al.AGEs, RAGEs and s-RAGE; friend or foe for cancer[J].Semin Cancer Biol,2018,49:44-55.DOI: 10.1016/j.semcancer.2017.07.001.
    [20]
    BrownleeM.Biochemistry and molecular cell biology of diabetic complications[J].Nature,2001,414(6865):813-820.DOI: 10.1038/414813a.
    [21]
    HudsonBI,LippmanME.Targeting RAGE signaling in inflammatory disease[J].Annu Rev Med,2018,69:349-364.DOI: 10.1146/annurev-med-041316-085215.
    [22]
    YaoD,BrownleeM.Hyperglycemia-induced reactive oxygen species increase expression of the receptor for advanced glycation end products (RAGE) and RAGE ligands[J].Diabetes,2010,59(1):249-255.DOI: 10.2337/db09-0801.
    [23]
    DavisFM,KimballA,BoniakowskiA,et al.Dysfunctional wound healing in diabetic foot ulcers: new crossroads[J].Curr Diab Rep,2018,18(1):2.DOI: 10.1007/s11892-018-0970-z.
    [24]
    TellecheaA,LealEC,KafanasA,et al.Mast cells regulate wound healing in diabetes[J].Diabetes,2016,65(7):2006-2019.DOI: 10.2337/db15-0340.
    [25]
    WilgusTA,RoyS,McDanielJC.Neutrophils and wound repair: positive actions and negative reactions[J].Adv Wound Care (New Rochelle),2013,2(7):379-388.DOI: 10.1089/wound.2012.0383.
    [26]
    KrzyszczykP,SchlossR,PalmerA,et al.The role of macrophages in acute and chronic wound healing and interventions to promote pro-wound healing phenotypes[J].Front Physiol,2018,9:419.DOI: 10.3389/fphys.2018.00419.
    [27]
    HeskethM,SahinKB,WestZE,et al.Macrophage phenotypes regulate scar formation and chronic wound healing[J].Int J Mol Sci,2017,18(7):1545.DOI: 10.3390/ijms18071545.
    [28]
    MoseleyR,StewartJE,StephensP,et al.Extracellular matrix metabolites as potential biomarkers of disease activity in wound fluid: lessons learned from other inflammatory diseases?[J].Br J Dermatol,2004,150(3):401-413.DOI: 10.1111/j.1365-2133.2004.05845.x.
    [29]
    DunnillC,PattonT,BrennanJ,et al.Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process[J].Int Wound J,2017,14(1):89-96.DOI: 10.1111/iwj.12557.
    [30]
    BaltzisD,EleftheriadouI,VevesA.Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights[J].Adv Ther,2014,31(8):817-836.DOI: 10.1007/s12325-014-0140-x.
    [31]
    FadiniGP,AlbieroM,MenegazzoL,et al.The redox enzyme p66Shc contributes to diabetes and ischemia-induced delay in cutaneous wound healing[J].Diabetes,2010,59(9):2306-2314.DOI: 10.2337/db09-1727.
    [32]
    KimJH,YangB,TedescoA,et al.High levels of oxidative stress and skin microbiome are critical for initiation and development of chronic wounds in diabetic mice[J].Sci Rep,2019,9(1):19318.DOI: 10.1038/s41598-019-55644-3.
    [33]
    SchremlS,SzeimiesRM,PrantlL,et al.Oxygen in acute and chronic wound healing[J].Br J Dermatol,2010,163(2):257-268.DOI: 10.1111/j.1365-2133.2010.09804.x.
    [34]
    Cabral-PachecoGA,Garza-VelozI,Castruita-De La RosaC,et al.The roles of matrix metalloproteinases and their inhibitors in human diseases[J].Int J Mol Sci,2020,21(24):9739.DOI: 10.3390/ijms21249739.
    [35]
    MastBA,SchultzGS.Interactions of cytokines, growth factors, and proteases in acute and chronic wounds[J].Wound Repair Regen,1996,4(4):411-420.DOI: 10.1046/j.1524-475X.1996.40404.x.
    [36]
    AcostaJB,del BarcoDG,VeraDC,et al.The pro-inflammatory environment in recalcitrant diabetic foot wounds[J].Int Wound J,2008,5(4):530-539.DOI: 10.1111/j.1742-481X.2008.00457.x.
    [37]
    PitoccoD,SpanuT,Di LeoM,et al.Diabetic foot infections: a comprehensive overview[J].Eur Rev Med Pharmacol Sci,2019,23(2 Suppl):S26-37.DOI: 10.26355/eurrev_201904_17471.
    [38]
    FalangaV. Wound healing and its impairment in the diabetic foot[J]. Lancet,2005,366(9498):1736-1743. DOI: 10.1016/S0140-6736(05)67700-8.
    [39]
    LimJZ,NgNS,ThomasC.Prevention and treatment of diabetic foot ulcers[J].J R Soc Med,2017,110(3):104-109.DOI: 10.1177/0141076816688346.
    [40]
    WuYK,ChengNC,ChengCM.Biofilms in chronic wounds: pathogenesis and diagnosis[J].Trends Biotechnol,2019,37(5):505-517.DOI: 10.1016/j.tibtech.2018.10.011.
    [41]
    ThurlowLR,HankeML,FritzT,et al.Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo[J].J Immunol,2011,186(11):6585-6596.DOI: 10.4049/jimmunol.1002794.
    [42]
    PidwillGR,GibsonJF,ColeJ,et al.The role of macrophages in Staphylococcus aureus infection[J].Front Immunol,2021,11:620339.DOI: 10.3389/fimmu.2020.620339.
    [43]
    JayakumarA,JoseVK,LeeJM.Hydrogels for medical and environmental applications[J].Small Methods,2020,4(3):1900735.DOI: 10.1002/smtd.201900735.
    [44]
    Maaz ArifM,KhanSM,GullN,et al.Polymer-based biomaterials for chronic wound management: promises and challenges[J].Int J Pharm,2021,598:120270.DOI: 10.1016/j.ijpharm.2021.120270.
    [45]
    ZhangX,ShuW,YuQ,et al.Functional biomaterials for treatment of chronic wound[J].Front Bioeng Biotechnol,2020,8:516.DOI: 10.3389/fbioe.2020.00516.
    [46]
    WalkerBW,LaraRP,MogadamE,et al.Rational design of microfabricated electroconductive hydrogels for biomedical applications[J].Prog Polym Sci,2019,92:135-157.DOI: 10.1016/j.progpolymsci.2019.02.007.
    [47]
    LiS,DongS,XuW,et al.Antibacterial hydrogels[J].Adv Sci (Weinh),2018,5(5):1700527.DOI: 10.1002/advs.201700527.
    [48]
    WangT,ZhengY,ShiY,et al.pH-responsive calcium alginate hydrogel laden with protamine nanoparticles and hyaluronan oligosaccharide promotes diabetic wound healing by enhancing angiogenesis and antibacterial activity[J].Drug Deliv Transl Res,2019,9(1):227-239.DOI: 10.1007/s13346-018-00609-8.
    [49]
    MasoodN,AhmedR,TariqM,et al.Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits[J].Int J Pharm,2019,559:23-36.DOI: 10.1016/j.ijpharm.2019.01.019.
    [50]
    GuptaA,BriffaSM,SwinglerS,et al.Synthesis of silver nanoparticles using curcumin-cyclodextrins loaded into bacterial cellulose-based hydrogels for wound dressing applications[J].Biomacromolecules,2020,21(5):1802-1811.DOI: 10.1021/acs.biomac.9b01724.
    [51]
    NešovićK,Mišković StankovićV.A comprehensive review of the polymer-based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications[J].Polym Eng Sci,2020,60(7):1393-1419.DOI: 10.1002/pen.25410.
    [52]
    KoehlerJ,BrandlFP,GoepferichAM.Hydrogel wound dressings for bioactive treatment of acute and chronic wounds[J].Eur Polym J,2018,100:1-11.DOI: 10.1016/j.eurpolymj.2017.12.046.
    [53]
    ZhaoY,LiZ,SongS,et al.Skin-inspired antibacterial conductive hydrogels for epidermal sensors and diabetic foot wound dressings[J].Adv Funct Mater,2019,29(31):1901474.DOI: 10.1002/adfm.201901474.
    [54]
    WangM,WangC,ChenM,et al.Efficient angiogenesis-based diabetic wound healing/skin reconstruction through bioactive antibacterial adhesive ultraviolet shielding nanodressing with exosome release[J].ACS Nano,2019,13(9):10279-10293.DOI: 10.1021/acsnano.9b03656.
    [55]
    TuZ,ChenM,WangM,et al.Engineering bioactive M2 macrophage-polarized anti-inflammatory, antioxidant, and antibacterial scaffolds for rapid angiogenesis and diabetic wound repair[J].Adv Funct Mater,2021,31(30):2100924.DOI: 10.1002/adfm.202100924.
    [56]
    WangJ,ChenXY,ZhaoY,et al.pH-switchable antimicrobial nanofiber networks of hydrogel eradicate biofilm and rescue stalled healing in chronic wounds[J].ACS Nano,2019,13(10):11686-11697.DOI: 10.1021/acsnano.9b05608.
    [57]
    MasoodN,AhmedR,TariqM,et al.Silver nanoparticle impregnated chitosan-PEG hydrogel enhances wound healing in diabetes induced rabbits[J].Int J Pharm,2019,559:23-36.DOI: 10.1016/j.ijpharm.2019.01.019.
    [58]
    ZhongY,SeidiF,LiC,et al.Antimicrobial/biocompatible hydrogels dual-reinforced by cellulose as ultrastretchable and rapid self-healing wound dressing[J].Biomacromolecules,2021,22(4):1654-1663.DOI: 10.1021/acs.biomac.1c00086.
    [59]
    ThapaRK,DiepDB,TønnesenHH.Topical antimicrobial peptide formulations for wound healing: current developments and future prospects[J].Acta Biomater,2020,103:52-67.DOI: 10.1016/j.actbio.2019.12.025.
    [60]
    FjellCD,HissJA,HancockRE,et al.Designing antimicrobial peptides: form follows function[J].Nat Rev Drug Discov,2011,11(1):37-51.DOI: 10.1038/nrd3591.
    [61]
    DimaS,LeeYY,WatanabeI,et al.Antibacterial effect of the natural polymer ε-polylysine against oral pathogens associated with periodontitis and caries[J].Polymers (Basel),2020,12(6):1218.DOI: 10.3390/polym12061218.
    [62]
    LiP,ZhouC,RayatpishehS,et al.Cationic peptidopolysaccharides show excellent broad-spectrum antimicrobial activities and high selectivity[J].Adv Mater,2012,24(30):4130-4137.DOI: 10.1002/adma.201104186.
    [63]
    WangC,WangM,XuT,et al.Engineering bioactive self-healing antibacterial exosomes hydrogel for promoting chronic diabetic wound healing and complete skin regeneration[J].Theranostics,2019,9(1):65-76.DOI: 10.7150/thno.29766.
    [64]
    LiuH,LiZ,ZhaoY,et al.Novel diabetic foot wound dressing based on multifunctional hydrogels with extensive temperature- tolerant, durable, adhesive, and intrinsic antibacterial properties[J].ACS Appl Mater Interfaces,2021,13(23):26770-26781.DOI: 10.1021/acsami.1c05514.
    [65]
    ZhaoY,DuX,JiangL,et al.Glucose oxidase-loaded antimicrobial peptide hydrogels: potential dressings for diabetic wound[J].J Nanosci Nanotechnol,2020,20(4):2087-2094.DOI: 10.1166/jnn.2020.17189.
    [66]
    ZhaoH,HuangJ,LiY,et al.ROS-scavenging hydrogel to promote healing of bacteria infected diabetic wounds[J].Biomaterials,2020,258:120286.DOI: 10.1016/j.biomaterials.2020.120286.
    [67]
    WangJ,YeY,YuJ,et al.Core-shell microneedle gel for self- regulated insulin delivery[J].ACS Nano,2018,12(3):2466-2473.DOI: 10.1021/acsnano.7b08152.
    [68]
    WangC,WangJ,ZhangX,et al.In situ formed reactive oxygen species-responsive scaffold with gemcitabine and checkpoint inhibitor for combination therapy[J].Sci Transl Med,2018,10(429):eaan3682. DOI: 10.1126/scitranslmed.aan3682.
    [69]
    BankotiK,RameshbabuAP,DattaS,et al.Carbon nanodot decorated acellular dermal matrix hydrogel augments chronic wound closure[J].J Mater Chem B,2020,8(40):9277-9294.DOI: 10.1039/d0tb01574a.
    [70]
    ZhaoX,LiangY,HuangY,et al.Physical double-network hydrogel adhesives with rapid shape adaptability, fast self- healing, antioxidant and NIR/pH stimulus-responsiveness for multidrug-resistant bacterial infection and removable wound dressing[J].Adv Funct Mater,2020,30(17):1910748.DOI: 10.1002/adfm.201910748.
    [71]
    ZhaoX,PeiD,YangY,et al.Green tea derivative driven smart hydrogels with desired functions for chronic diabetic wound treatment[J].Adv Funct Mater,2021,31(18):2009442.DOI: 10.1002/adfm.202009442.
    [72]
    ZhaoW,ZhangX,ZhangR,et al.Self-assembled herbal medicine encapsulated by an oxidation-sensitive supramolecular hydrogel for chronic wound treatment[J].ACS Appl Mater Interfaces,2020,12(51):56898-56907.DOI: 10.1021/acsami.0c19492.
    [73]
    WuH,LiF,ShaoW,et al.Promoting angiogenesis in oxidative diabetic wound microenvironment using a nanozyme-reinforced self-protecting hydrogel[J].ACS Cent Sci,2019,5(3):477-485.DOI: 10.1021/acscentsci.8b00850.
    [74]
    KrishnaswamyVR,MintzD,SagiI.Matrix metalloproteinases: the sculptors of chronic cutaneous wounds[J].Biochim Biophys Acta Mol Cell Res,2017,1864(11 Pt B):2220-2227.DOI: 10.1016/j.bbamcr.2017.08.003.
    [75]
    StefanovI,Pérez-RafaelS,HoyoJ,et al.Multifunctional enzymatically generated hydrogels for chronic wound application[J].Biomacromolecules,2017,18(5):1544-1555.DOI: 10.1021/acs.biomac.7b00111.
    [76]
    HuberD,GrzelakA,BaumannM,et al.Anti-inflammatory and anti-oxidant properties of laccase-synthesized phenolic-O-carboxymethyl chitosan hydrogels[J].N Biotechnol,2018,40(Pt B):236-244.DOI: 10.1016/j.nbt.2017.09.004.
    [77]
    LanB,ZhangL,YangL,et al.Sustained delivery of MMP-9 siRNA via thermosensitive hydrogel accelerates diabetic wound healing[J].J Nanobiotechnology,2021,19(1):130.DOI: 10.1186/s12951-021-00869-6.
    [78]
    MizunoD,Konoha-MizunoK,MoriM,et al.Protective activity of carnosine and anserine against zinc-induced neurotoxicity: a possible treatment for vascular dementia[J].Metallomics,2015,7(8):1233-1239.DOI: 10.1039/c5mt00049a.
    [79]
    SonamuthuJ,CaiY,LiuH,et al.MMP-9 responsive dipeptide-tempted natural protein hydrogel-based wound dressings for accelerated healing action of infected diabetic wound[J].Int J Biol Macromol,2020,153:1058-1069.DOI: 10.1016/j.ijbiomac.2019.10.236.
    [80]
    LamJK,ChowMY,ZhangY,et al.siRNA versus miRNA as therapeutics for gene silencing[J].Mol Ther Nucleic Acids,2015,4(9):e252.DOI: 10.1038/mtna.2015.23.
    [81]
    SalehB,DhaliwalHK,Portillo-LaraR,et al.Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing[J].Small,2019,15(36):e1902232.DOI: 10.1002/smll.201902232.
    [82]
    TellecheaA,BaiS,DangwalS,et al.Topical application of a mast cell stabilizer improves impaired diabetic wound healing[J].J Invest Dermatol,2020,140(4):901-911.e11.DOI: 10.1016/j.jid.2019.08.449.
    [83]
    FengZ,SuQ,ZhangC,et al.Bioinspired nanofibrous glycopeptide hydrogel dressing for accelerating wound healing: a cytokine- free, M2-type macrophage polarization approach[J].Adv Funct Mater,2020,30(52):2006454.DOI: 10.1002/adfm.202006454.
    [84]
    PengY,HeD,GeX,et al.Construction of heparin-based hydrogel incorporated with Cu5.4O ultrasmall nanozymes for wound healing and inflammation inhibition[J].Bioact Mater,2021,6(10):3109-3124.DOI: 10.1016/j.bioactmat.2021.02.006.
    [85]
    LiuT,XiaoB,XiangF,et al.Ultrasmall copper-based nanoparticles for reactive oxygen species scavenging and alleviation of inflammation related diseases[J].Nat Commun,2020,11(1):2788.DOI: 10.1038/s41467-020-16544-7.
    [86]
    LohmannN,SchirmerL,AtallahP,et al.Glycosaminoglycan- based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice[J].Sci Transl Med,2017,9(386):eaai9044.DOI: 10.1126/scitranslmed.aai9044.
    [87]
    XuX,GuS,HuangX,et al.The role of macrophages in the formation of hypertrophic scars and keloids[J/OL].Burns Trauma,2020,8:tkaa006[2021-07-15].https://academic.oup.com/burnstrauma/article/doi/ 10.1093/burnst/tkaa006/5801085?searchresult=1.DOI: 10.1093/burnst/tkaa006.
    [88]
    MosserDM,EdwardsJP.Exploring the full spectrum of macrophage activation[J].Nat Rev Immunol,2008,8(12):958-969.DOI: 10.1038/nri2448.
  • Cited by

    Periodical cited type(21)

    1. 严炯,张钒,秦宏波,贾志刚. rhEGF凝胶联合水凝胶敷料对烧伤后瘢痕皮肤软组织扩张术后患者创面愈合及生长因子的影响. 天津药学. 2025(01): 70-73 .
    2. 胡东升. TAO联合rh-bFGF凝胶对深Ⅱ度烧伤患者症状消失时间及炎症因子的影响. 现代医药卫生. 2024(09): 1502-1505+1510 .
    3. 武胡雯,邓晗彬,周涵,张培深,范闻轩,李嘉诚,程少文. 水凝胶敷料减轻烧伤创面瘢痕的研究进展. 海南医学院学报. 2024(13): 1027-1034 .
    4. 李树松,马滢,吴晓明,赵晓玉,李丽. 胸腺素β4联合水胶体敷料对深Ⅱ度烧伤大鼠创面愈合及p38丝裂原活化蛋白激酶信号转导通路的影响. 河北医科大学学报. 2024(07): 832-838 .
    5. 高学坡,李茂清,贾鸿飞. 纳米银敷料辅助治疗对深度大面积烧伤患者创面愈合及血清VEGF、EGF水平的影响. 中国医师杂志. 2024(08): 1211-1215 .
    6. 高东东,侯国玲,张宏峰. 两种敷料结合自体细胞喷雾技术对手部深Ⅱ度烧伤的疗效观察. 国际医药卫生导报. 2024(17): 2905-2910 .
    7. 郑祥兵,阴俊,叶凌霄,陈诚,胡涛涛,邹勇,刘兵. 湿润烧伤膏对老年烧伤整形术后患者创面愈合及PI3K/Akt/eNOS通路的影响. 分子诊断与治疗杂志. 2024(10): 1965-1969 .
    8. 张国辉,张海博,曹东升. 紫花牡荆素对浅Ⅱ度烧伤大鼠创面愈合的影响及机制研究. 中国药房. 2024(21): 2603-2608 .
    9. 王亮琴,邱思花,肖晓青,兰加寿. 四维子宫输卵管超声造影对输卵管阻塞性病变诊断价值及不良反应研究. 中外医学研究. 2023(01): 84-87 .
    10. 罗高兴,卢毅飞,黄灿. 功能性水凝胶促进皮肤创面的修复. 中华烧伤与创面修复杂志. 2023(01): 9-14 . 本站查看
    11. 李芳,蒋海涛,张恺,秦莹,郑纪伟. 双层型脱细胞真皮基质对大鼠伤口愈合的实验研究. 医学信息. 2023(02): 49-53 .
    12. 张申,凡会霞,刘思琦,杨会举,刘世举,刘佃温. “偎脓长肉”理论与“湿性愈合”理论在创伤修复中的相关性探究. 中医学报. 2023(03): 556-566 .
    13. 马丽,潘孙峰,王振君,方高丰,朱敏达,胡衍泽,王晶. 保留变性真皮二期植皮法治疗四肢关节部位深Ⅱ度烧伤的临床效果. 浙江医学. 2023(04): 399-403 .
    14. 杨春艳,柳研,李艳,唐明秀,杨文信. 复方芙蓉花叶提取物对烧伤后创面感染大鼠创面愈合的影响及其作用机制. 中华医院感染学杂志. 2023(12): 1783-1787 .
    15. 陈才,田文艳,寇新燕. 创面磨削痂术联合外用rhGM-CSF对Ⅱ度烧伤患儿创面愈合的影响. 中国美容医学. 2023(07): 28-31 .
    16. 王林,陈剑利,高小春,邹才学. 两种不同敷料联合自体微粒皮种植术治疗深Ⅱ度烧伤效果对比. 中国美容医学. 2023(08): 52-55 .
    17. 王爱环,何军霞,冯慧芳,纠湘涵. PRP联合次氯酸清洁敷料在烧伤后创面愈合中的作用. 中国医疗美容. 2023(09): 19-22 .
    18. 邓雪,李宁静,柳鹏. rh-aFGF外用联合水凝胶敷料治疗Ⅱ度烧伤创面. 中国美容医学. 2023(11): 50-53 .
    19. 王阳,刘军,李为朋,郭秀侠,卢亚洁. rhGM-CSF凝胶联合磺胺嘧啶银对面部深Ⅱ度烧伤创面愈合质量的影响. 中国美容医学. 2023(12): 33-36 .
    20. 王娇,蒋红英,余曦,吴姁怿. 自体富血小板血浆联合湿性愈合敷料治疗老年深Ⅱ度烧伤难愈合创面的临床观察. 老年医学与保健. 2022(03): 659-663 .
    21. 张小华,林光明,郭鹏,熊鑫,苏刚,刘杨,胡大迁,张旭东. 清创联合负压封闭引流治疗对深Ⅱ度烧伤病人创面愈合及感染情况的影响. 临床外科杂志. 2022(12): 1115-1118 .

    Other cited types(1)

  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (1937) PDF downloads(277) Cited by(22)
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return