Citation: | Wu YT,Zhang Z,Ji R,et al.Regulatory effects of bio-intensity electric field on microtubule acetylation in human epidermal cell line HaCaT[J].Chin J Burns Wounds,2022,38(11):1066-1072.DOI: 10.3760/cma.j.cn501120-20211105-00377. |
[1] |
GradaA, Otero-VinasM, Prieto-CastrilloF, et al. Research techniques made simple: analysis of collective cell migration using the wound healing assay[J]. J Invest Dermatol, 2017, 137(2): e11-e16. DOI: 10.1016/j.jid.2016.11.020.
|
[2] |
冀然,张泽,王文平,等.生物强度电场对人表皮细胞株 HaCaT和小鼠表皮细胞运动性及CD9表达的影响[J].中华烧伤杂志,2021,37(1):34-41.DOI: 10.3760/cma.j.cn501120-20200115-00023.
|
[3] |
TaiG, TaiM, ZhaoM. Electrically stimulated cell migration and its contribution to wound healing[J/OL]. Burns Trauma, 2018, 6(1): 20[2022-10-23]. https://pubmed.ncbi.nlm.nih.gov/30003115/. DOI: 10.1186/s41038-018-0123-2.
|
[4] |
王文平,冀然,张泽,等.生物强度电场对人皮肤成纤维细胞转化的调节作用[J].中华烧伤与创面修复杂志,2022,38(4):354-362.DOI: 10.3760/cma.j.cn501120-20210112-00017.
|
[5] |
JiR,TengM,ZhangZ,et al.Electric field down-regulates CD9 to promote keratinocytes migration through AMPK pathway[J].Int J Med Sci,2020,17(7):865-873.DOI: 10.7150/ijms.42840.
|
[6] |
LinBJ,TsaoSH,ChenA,et al.Lipid rafts sense and direct electric field-induced migration[J].Proc Natl Acad Sci U S A,2017,114(32):8568-8573.DOI: 10.1073/pnas.1702526114.
|
[7] |
GarcinC,StraubeA.Microtubules in cell migration[J].Essays Biochem,2019,63(5):509-520.DOI: 10.1042/EBC20190016.
|
[8] |
JankeC, MontagnacG. Causes and consequences of microtubule acetylation[J]. Curr Biol, 2017, 27(23):R1287-R1292. DOI: 10.1016/j.cub.2017.10.044.
|
[9] |
MorelliG, EvenA, Gladwyn-NgI, et al. p27Kip1 modulates axonal transport by regulating α-tubulin acetyltransferase 1 stability[J]. Cell Rep, 2018, 23(8): 2429-2442. DOI: 10.1016/j.celrep.2018.04.083.
|
[10] |
ChawanV, YevateS, GajbhiyeR, et al. Acetylation/deacetylation and microtubule associated proteins influence flagellar axonemal stability and sperm motility[J]. Biosci Rep, 2020, 40(12): BSR20202442. DOI: 10.1042/BSR20202442.
|
[11] |
DeakinNO, TurnerCE. Paxillin inhibits HDAC6 to regulate microtubule acetylation, Golgi structure, and polarized migration[J]. J Cell Biol, 2014, 206(3): 395-413. DOI: 10.1083/jcb.201403039.
|
[12] |
NuccitelliR. A role for endogenous electric fields in wound healing[J]. Curr Top Dev Biol, 2003, 58: 1-26. DOI: 10.1016/S0070-2153(03)58001-2.
|
[13] |
CaiJ, ZhongY, TianS. Naturally occurring davanone terpenoid exhibits anticancer potential against ovarian cancer cells by inducing programmed cell death, by inducing caspase-dependent apoptosis, loss of mitochondrial membrane potential, inhibition of cell migration and invasion and targeting PI3K/AKT/MAPK signaling pathway[J]. J BUON, 2020, 25(5): 2301-2307.
|
[14] |
GoodsonHV, JonassonEM. Microtubules and microtubule-associated proteins[J]. Cold Spring Harb Perspect Biol, 2018, 10(6): a022608. DOI: 10.1101/cshperspect.a022608.
|
[15] |
LaFlammeSE, Mathew-SteinerS, SinghN, et al. Integrin and microtubule crosstalk in the regulation of cellular processes[J]. Cell Mol Life Sci, 2018, 75(22): 4177-4185. DOI: 10.1007/s00018-018-2913-x.
|
[16] |
JankeC, MagieraMM. The tubulin code and its role in controlling microtubule properties and functions[J]. Nat Rev Mol Cell Biol, 2020, 21(6): 307-326. DOI: 10.1038/s41580-020-0214-3.
|
[17] |
Roll-MecakA. The tubulin code in microtubule dynamics and information encoding[J]. Dev Cell, 2020, 54(1): 7-20. DOI: 10.1016/j.devcel.2020.06.008.
|
[18] |
LiuN, XiongY, RenY, et al. Proteomic profiling and functional characterization of multiple post-translational modifications of tubulin[J]. J Proteome Res, 2015, 14(8): 3292-3304. DOI: 10.1021/acs.jproteome.5b00308.
|
[19] |
XuZ, SchaedelL, PortranD, et al. Microtubules acquire resistance from mechanical breakage through intralumenal acetylation[J]. Science, 2017, 356(6335): 328-332. DOI: 10.1126/science.aai8764.
|
[20] |
Eshun-WilsonL, ZhangR, PortranD, et al. Effects of α-tubulin acetylation on microtubule structure and stability[J]. Proc Natl Acad Sci U S A, 2019, 116(21): 10366-10371. DOI: 10.1073/pnas.1900441116.
|
[21] |
BanceB, SeetharamanS, LeducC, et al. Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration[J]. J Cell Sci, 2019, 132(7): jcs225805. DOI: 10.1242/jcs.225805.
|
[22] |
AtkinsonSJ, GontarczykAM, AlghamdiAA, et al. The β3-integrin endothelial adhesome regulates microtubule-dependent cell migration[J]. EMBO Rep, 2018, 19(7): e44578. DOI: 10.15252/embr.201744578.
|
[23] |
MyatMM, RashmiRN, MannaD, et al. Drosophila KASH-domain protein Klarsicht regulates microtubule stability and integrin receptor localization during collective cell migration[J]. Dev Biol, 2015, 407(1): 103-114. DOI: 10.1016/j.ydbio.2015.08.003.
|
[24] |
Rampioni VinciguerraGL, CitronF, SegattoI, et al. p27kip1 at the crossroad between actin and microtubule dynamics[J]. Cell Div, 2019, 14(1): 2. DOI: 10.1186/s13008-019-0045-9.
|
[25] |
ReedNA, CaiD, BlasiusTL, et al. Microtubule acetylation promotes kinesin-1 binding and transport[J]. Curr Biol, 2006, 16(21): 2166-2172. DOI: 10.1016/j.cub.2006.09.014.
|
[26] |
Castro-CastroA, JankeC, MontagnacG, et al. ATAT1/MEC-17 acetyltransferase and HDAC6 deacetylase control a balance of acetylation of alpha-tubulin and cortactin and regulate MT1-MMP trafficking and breast tumor cell invasion[J]. Eur J Cell Biol, 2012, 91(11/12): 950-960. DOI: 10.1016/j.ejcb.2012.07.001.
|
[27] |
van DijkJ, BompardG, CauJ, et al. Microtubule polyglutamylation and acetylation drive microtubule dynamics critical for platelet formation[J]. BMC Biol, 2018, 16(1): 116. DOI: 10.1186/s12915-018-0584-6.
|
[28] |
ShiP, WangY, HuangY, et al. Arp2/3-branched actin regulates microtubule acetylation levels and affects mitochondrial distribution[J]. J Cell Sci, 2019, 132(6): jcs226506. DOI: 10.1242/jcs.226506.
|
[29] |
HubbertC, GuardiolaA, ShaoR, et al. HDAC6 is a microtubule-associated deacetylase[J]. Nature, 2002, 417(6887): 455-458. DOI: 10.1038/417455a.
|
[30] |
AdalbertR, KaiedaA, AntoniouC, et al. Novel HDAC6 inhibitors increase tubulin acetylation and rescue axonal transport of mitochondria in a model of charcot-marie-tooth type 2F[J]. ACS Chem Neurosci, 2020, 11(3): 258-267. DOI: 10.1021/acschemneuro.9b00338.
|
[31] |
KershawS, MorganDJ, BoydJ, et al. Glucocorticoids rapidly inhibit cell migration through a novel, non-transcriptional HDAC6 pathway[J]. J Cell Sci, 2020, 133(11): jcs242842. DOI: 10.1242/jcs.242842.
|
[32] |
Valenzuela-FernándezA, CabreroJR, SerradorJM, et al. HDAC6: a key regulator of cytoskeleton, cell migration and cell-cell interactions[J]. Trends Cell Biol, 2008, 18(6): 291-297. DOI: 10.1016/j.tcb.2008.04.003.
|
[33] |
KeB, ChenY, TuW, et al. Inhibition of HDAC6 activity in kidney diseases: a new perspective[J]. Mol Med, 2018, 24(1): 33. DOI: 10.1186/s10020-018-0027-4.
|
[34] |
KalinskiAL, KarAN, CraverJ, et al. Deacetylation of Miro1 by HDAC6 blocks mitochondrial transport and mediates axon growth inhibition[J]. J Cell Biol, 2019, 218(6): 1871-1890. DOI: 10.1083/jcb.201702187.
|
[35] |
SeidelC, SchnekenburgerM, DicatoM, et al. Histone deacetylase 6 in health and disease[J]. Epigenomics, 2015, 7(1): 103-118. DOI: 10.2217/epi.14.69.
|
[36] |
Shafaq-ZadahM, Gomes-SantosCS, BardinS, et al. Persistent cell migration and adhesion rely on retrograde transport of β1 integrin[J]. Nature Cell Biology, 2016, 18(1): 54-64. DOI: 10.1038/ncb3287.
|
[37] |
RenX, SunH, LiuJ, et al. Keratinocyte electrotaxis induced by physiological pulsed direct current electric fields[J]. Bioelectrochemistry, 2019, 127: 113-124. DOI: 10.1016/j.bioelechem.2019.02.001.
|
[1] | Li Yashu, He Weifeng, Lyu Kaiyang. Role and mechanism of Vγ4 T cell depletion in epidermal tissue repair after ultraviolet damage to mouse skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(5): 415-424. doi: 10.3760/cma.j.cn501225-20240121-00026 |
[2] | Tang Xiaoyu, Liu Chenyang, Chu Guoping, Li Xiaoxiao, Hu Kai, Zhao Peng, Lyu Guozhong. Effects of porcine urinary bladder matrix on motility and polarization of bone marrow-derived macrophages in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(1): 25-34. doi: 10.3760/cma.j.cn501225-20220516-00187 |
[3] | Chen Wei, Xu Guangchao, Huang Zhonglu, Chen Li, Nie Kaiyu. Research advances on the mechanism of nerve regeneration-related protein in skin fibrosis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(5): 491-495. doi: 10.3760/cma.j.cn501225-20220701-00278 |
[4] | Sun Jiachen, Sun Tianjun, Shen Chuan'an, Zhao Hongqing, Liu Xinzhu, Zhang Yijie. Effects of collagen type ⅩⅦ α1 on epidermal stem cells in aging skin and the microRNA intervention mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(9): 839-848. doi: 10.3760/cma.j.cn501120-20210829-00293 |
[5] | Shi Zhiyuan, Zhang Bohan, Sun Jiachen, Liu Xinzhu, Shen Chuan'an. Research advances on the role and mechanism of epidermal stem cells in skin wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(9): 854-858. doi: 10.3760/cma.j.cn501120-20211109-00382 |
[6] | Wang Wenping, Ji Ran, Zhang Ze, Wu Yating, Zhang Hengshu, Zhang Qiong, Jiang Xupin, Teng Miao. Regulatory effects of bio-intensity electric field on transformation of human skin fibroblasts[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(4): 354-362. doi: 10.3760/cma.j.cn501120-20210112-00017 |
[7] | Zhang Junhui, Zhang Qiong, Jia Jiezhi, Li Hongmei, Zhang Can, Hu Jiongyu, Zhang Dongxia, Huang Yuesheng. Effects of B-cell lymphoma-2/adenovirus E1B 19 000 interacting protein 3 on the migration and motility of human dermal microvascular endothelial cells under hypoxia and the mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 9-16. doi: 10.3760/cma.j.cn501120-20200927-00425 |
[8] | Zhang Can, Zhang Qiong, Zhang Junhui, Wang Fan, Zhang Jiaping. Effects and molecular mechanism of histone deacetylase 6 inhibitor Tubastatin A on the prolifera- tion and movement of human skin fibroblasts[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 853-859. doi: 10.3760/cma.j.cn501120-20200519-00274 |
[9] | Ji Ran, Zhang Ze, Wang Wenping, Zhang Qiong, Lyu Yanling, Jiang Xupin, Teng Miao. Effects of bio-strength electric field on the motility and CD9 expression of human epidermal cell line HaCaT and mouse epidermal cells[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 34-41. doi: 10.3760/cma.j.cn501120-20200115-00023 |
[10] | He Weifeng, Luo Gaoxing. Role of skin immunity on wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(10): 901-904. doi: 10.3760/cma.j.cn501120-20200823-00389 |
[11] | Liu Jie, Ren Xi, Guo Xiaowei, Sun Huanbo, Tang Yong, Luo Zhenghui, Zhang Qiong, Zhang Dongxia, Huang Yuesheng, Zhang Jiaping. Effects of direct current electric field on directional migration and arrangement of dermal fibroblasts in neonatal BALB/c mice and the mechanisms[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(4): 224-231. doi: 10.3760/cma.j.issn.1009-2587.2016.04.007 |
[12] | Li Yashu, He Weifeng, Wu Jun. Advances in the research of biological characters and pathophysiological effects of dendritic epidermal T lymphocytes[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(1): 58-61. doi: 10.3760/cma.j.issn.1009-2587.2016.01.018 |
[13] | Deng Xiang-dong, Chen Fu-xing, Liu Jun-quan, Zhou Zhong-hai, Jia Chi-yu. Expression of coxsackie-adenovirus receptor in keratinocytes of mouse skin after heat stimulation andthe effect of coxsackie-adenovirus receptor on dendritic epidermal T lymphocytes[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(1): 40-45. doi: 10.3760/cma.j.issn.1009-2587.2014.01.011 |
[14] | Yan Tiantian, Zhang Dongxia, Jiang Xupin, Zhang Qiong, Huang Yuesheng. Effects of hypoxia of different duration on movement and proliferation of human epidermal cell lineHaCaT[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(3): 231-236. doi: 10.3760/cma.j.issn.1009-2587.2014.03.012 |
[15] | JIANG Yan, WANG Xian-yuan, LUO Xiang-dong. Influence of histatin 1 on the proliferation and migration of HaCaT cells[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(3): 207-212. doi: 10.3760/cma.j.issn.1009-2587.2012.03.014 |
[16] | ZHAN Ri-xing, SUN Wei, YAO Zhi-hui, CUI Yan-yan, YANC Si-si, TAN Jiang-lin, ZHOU Jun-yi, WANG Ying, YANG Jun-jie, ZHANG Xiao-rong, HU Xiao-hong, WU jun, LUO Gao-xing. Biologic effect of nitric oxide on human epidermal stem cells in vitro[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(2): 125-129. doi: 10.3760/cma.j.issn.1009-2587.2012.02.012 |
[17] | DANG Yong-ming, FANG Ya-dong, HU Jiong-yu, ZHANG Jia-ping, SONG Hua-pei, ZHANG Yi-ming, ZHANG Qiong, HUANG Yue-sheng. Influence of microtubule depolymerization of myocardial cells on mitochondria distribution and ener- gy metabolism in adult rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2010, 26(1): 18-22. doi: 10.3760/cma.j.issn.1009-2587.2010.01.006 |
[18] | LIU Hu-xian, TIAN Xiao-chen, JIA Chi-yu, LU Xiao-jie, LI Gui-shui. Preliminary study on the phenomenon of epidermal stem cell ectopy in expanded skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(6): 437-440. doi: 10.3760/cma.j.issn.1009-2587.2009.06.013 |
[19] | KUANG Yong, HUANG Yue-sheng. Study on injury to microtubule of cardiomyosites at early post-hypoxia stage[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(3): 172-174. |
[20] | ZHANG zhi, LIU Yan, ZHANG Xiong, XU Wei-shi. The content of decorin and its mRNA expression in normal human skin and hyperplastic scars[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(2): 76-78. |