Citation: | Song W,Li Z,Zhu SJ,et al.Application of three-dimensional bioprinting ink containing platelet-rich plasma derived from human umbilical cord blood in the treatment of full-thickness skin defects in nude mice[J].Chin J Burns Wounds,2022,38(10):905-913.DOI: 10.3760/cma.j.cn501225-20220618-00243. |
[1] |
ChenS,ShiY,LuoY,et al.Layer-by-layer coated porous 3D printed hydroxyapatite composite scaffolds for controlled drug delivery[J].Colloids Surf B Biointerfaces,2019,179:121-127.DOI: 10.1016/j.colsurfb.2019.03.063.
|
[2] |
da SilvaLP,ReisRL,CorreloVM,et al.Hydrogel-based strategies to advance therapies for chronic skin wounds[J].Annu Rev Biomed Eng,2019,21:145-169.DOI: 10.1146/annurev-bioeng-060418-052422.
|
[3] |
HuH,XuFJ.Rational design and latest advances of polysaccharide-based hydrogels for wound healing[J].Biomater Sci,2020,8(8):2084-2101.DOI: 10.1039/d0bm00055h.
|
[4] |
XiaS,WengT,JinR,et al.Curcumin-incorporated 3D bioprinting gelatin methacryloyl hydrogel reduces reactive oxygen species-induced adipose-derived stem cell apoptosis and improves implanting survival in diabetic wounds[J/OL].Burns Trauma,2022,10:tkac001[2022-06-18].https://pubmed.ncbi.nlm.nih.gov/35291229/.DOI: 10.1093/burnst/tkac001.
|
[5] |
YaoB,WangR,WangY,et al.Biochemical and structural cues of 3D-printed matrix synergistically direct MSC differentiation for functional sweat gland regeneration[J].Sci Adv,2020,6(10):eaaz1094.DOI: 10.1126/sciadv.aaz1094.
|
[6] |
张超,李曌,宋薇,等.含人脂肪来源蛋白复合物的三维生物打印墨水的创面修复效应初探[J].中华烧伤杂志,2021,37(11):1011-1023.DOI: 10.3760/cma.j.cn501120-20210813-00282.
|
[7] |
SongW,YaoB,ZhuD,et al.3D-bioprinted microenvironments for sweat gland regeneration[J/OL].Burns Trauma,2022,10:tkab044[2022-06-18].https://pubmed.ncbi.nlm.nih.gov/35071651/.DOI: 10.1093/burnst/tkab044.
|
[8] |
LopesSV,CollinsMN,ReisRL,et al.Vascularization approaches in tissue engineering: recent developments on evaluation tests and modulation[J].ACS Appl Bio Mater,2021,4(4):2941-2956.DOI: 10.1021/acsabm.1c00051.
|
[9] |
BelderbosME,LevyO,MeyaardL,et al.Plasma-mediated immune suppression: a neonatal perspective[J].Pediatr Allergy Immunol,2013,24(2):102-113.DOI: 10.1111/pai.12023.
|
[10] |
CoxST,DanbyR,HernandezD,et al.Functional characterisation and analysis of the soluble NKG2D ligand repertoire detected in umbilical cord blood plasma[J].Front Immunol,2018,9:1282.DOI: 10.3389/fimmu.2018.01282.
|
[11] |
CoxST,MadrigalJA,SaudemontA.Three novel allelic variants of the RAET1E/ULBP4 gene in humans[J].Tissue Antigens,2012,80(4):390-392.DOI: 10.1111/j.1399-0039.2012.01933.x.
|
[12] |
SambergM,StoneR2nd,NatesanS,et al.Platelet rich plasma hydrogels promote in vitro and in vivo angiogenic potential of adipose-derived stem cells[J].Acta Biomater,2019,87:76-87.DOI: 10.1016/j.actbio.2019.01.039.
|
[13] |
SteinleA,LiP,MorrisDL,et al.Interactions of human NKG2D with its ligands MICA, MICB, and homologs of the mouse RAE-1 protein family[J].Immunogenetics,2001,53(4):279-287.DOI: 10.1007/s002510100325.
|
[14] |
VersuraP,ProfazioV,BuzziM,et al.Efficacy of standardized and quality-controlled cord blood serum eye drop therapy in the healing of severe corneal epithelial damage in dry eye[J].Cornea,2013,32(4):412-418.DOI: 10.1097/ICO.0b013e3182580762.
|
[15] |
EvertsP,OnishiK,JayaramP,et al.Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020[J].Int J Mol Sci,2020,21(20):7794.DOI: 10.3390/ijms21207794.
|
[16] |
LjubimovAV,SaghizadehM.Progress in corneal wound healing[J].Prog Retin Eye Res,2015,49:17-45.DOI: 10.1016/j.preteyeres.2015.07.002.
|
[17] |
NagarajaS,ChenL,DiPietroLA,et al.Computational analysis identifies putative prognostic biomarkers of pathological scarring in skin wounds[J].J Transl Med,2018,16(1):32.DOI: 10.1186/s12967-018-1406-x.
|
[18] |
FréchetteJP,MartineauI,GagnonG.Platelet-rich plasmas: growth factor content and roles in wound healing[J].J Dent Res,2005,84(5):434-439.DOI: 10.1177/154405910508400507.
|
[19] |
SirchiaG,RebullaP,MozziF,et al.A quality system for placental blood banking[J].Bone Marrow Transplant,1998,21 Suppl 3:S43-47.
|
[20] |
BuzziM,VersuraP,GrigoloB,et al.Comparison of growth factor and interleukin content of adult peripheral blood and cord blood serum eye drops for cornea and ocular surface diseases[J].Transfus Apher Sci,2018,57(4):549-555.DOI: 10.1016/j.transci.2018.06.001.
|
[21] |
RebullaP,PupellaS,SantodiroccoM,et al.Multicentre standardisation of a clinical grade procedure for the preparation of allogeneic platelet concentrates from umbilical cord blood[J].Blood Transfus,2016,14(1):73-79.DOI: 10.2450/2015.0122-15.
|
[22] |
ReddyLVK,MuruganD,MullickM,et al.Recent approaches for angiogenesis in search of successful tissue engineering and regeneration[J].Curr Stem Cell Res Ther,2020,15(2):111-134.DOI: 10.2174/1574888X14666191104151928.
|
[23] |
KoleskyDB,TrubyRL,GladmanAS,et al.3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs[J].Adv Mater,2014,26(19):3124-3130.DOI: 10.1002/adma.201305506.
|
[24] |
KobayashiY,SaitaY,TakakuT,et al.Platelet-rich plasma (PRP) accelerates murine patellar tendon healing through enhancement of angiogenesis and collagen synthesis[J].J Exp Orthop,2020,7(1):49.DOI: 10.1186/s40634-020-00267-1.
|
[25] |
BerndtS,CarpentierG,TurziA,et al.Angiogenesis is differentially modulated by platelet-derived products[J].Biomedicines,2021,9(3):251.DOI: 10.3390/biomedicines9030251.
|
[26] |
中国老年医学学会烧创伤分会.浓缩血小板制品在创面修复中应用的全国专家共识(2020版)[J].中华烧伤杂志,2020,36(11):993-1002.DOI: 10.3760/cma.j.cn501120-20200507-00256.
|
[27] |
LiY,MouS,XiaoP,et al.Delayed two steps PRP injection strategy for the improvement of fat graft survival with superior angiogenesis[J].Sci Rep,2020,10(1):5231.DOI: 10.1038/s41598-020-61891-6.
|
[28] |
MartinoMM,BriquezPS,RangaA,et al.Heparin-binding domain of fibrin(ogen) binds growth factors and promotes tissue repair when incorporated within a synthetic matrix[J].Proc Natl Acad Sci U S A,2013,110(12):4563-4568.DOI: 10.1073/pnas.1221602110.
|
[29] |
ZhangX,YaoD,ZhaoW,et al.Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value[J]. Adv Funct Mater,2021,31(8):2009258.DOI: 10.1002/adfm.202009258.
|
[1] | Luo Gaoxing, Zhou Xuan. Application of advanced biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 26-32. doi: 10.3760/cma.j.cn501225-20231128-00211 |
[2] | Dong Zuqin, Chen Yafang, Liang Jie, Fan Yujiang. Research advances of collagen-based biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 90-95. doi: 10.3760/cma.j.cn501225-20231026-00136 |
[3] | Liu Qinghua, Li Zhao, Enhejirigala, Zhang Chao, Song Wei, Wang Yuzhen, Liang Liting, Zhang Mengde, Huang Yuyan, Li Xiaohe, Huang Sha. Effects of immune responses mediated by topological structures of three-dimensional bioprinted scaffolds on hair follicle cycle in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 43-49. doi: 10.3760/cma.j.cn501225-20231020-00125 |
[4] | Jin Ronghua, Zhang Zhenzhen, Xu Pengqin, Xia Sizhan, Weng Tingting, Zhu Zhikang, Wang Xingang, You Chuangang, Han Chunmao. Effects of three-dimensional bioprinting antibacterial hydrogel on full-thickness skin defect wounds in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(2): 165-174. doi: 10.3760/cma.j.cn501120-20210809-00274 |
[5] | Gao Yixuan, Wang Lingfeng, Ba Te, Zou Xiaofang, Cao Shengjun, Li Junliang, Li Fang, Zhou Biao. Research advances of natural biomaterials in promoting wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(5): 481-486. doi: 10.3760/cma.j.cn501225-20220630-00276 |
[6] | Gu Cheng, Cao Gaobiao, Zhang Zhiqiang, Le Yingying, Ju Jihui, Zhang Guangliang, Yu Chenghao, Zuo Rui, Xu Chi, Hou Ruixing. Effects of tensile force on the vascular lumen formation in three-dimensional printed tissue[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(6): 565-572. doi: 10.3760/cma.j.cn501225-20220903-00377 |
[7] | Chen Lianglong, Yu Shengxiang, Ma Jun, Gao Yanbin, Yang Lei. Research progress of biomaterials in promoting wound vascularization[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(4): 381-385. doi: 10.3760/cma.j.cn501225-20220626-00261 |
[8] | Weng Tingting, Cai Chenghao, Han Chunmao, Wang Xingang. Research advances on biomaterials for the delivery of growth factors to regulate wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 691-696. doi: 10.3760/cma.j.cn501225-20220430-00166 |
[9] | Liu Xiaogang, Chen Lei, Li Haihang, Hu Yanke, Xiong Yahui, Huang Wei, Su Shasha, Qi Shaohai. Research advances on the application of natural and recombinant collagen in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 978-982. doi: 10.3760/cma.j.cn501120-20211123-00394 |
[10] | Chen Jiqiu, Zhu Shihui. Research advances on the construction of artificial dermal scaffolds based on biomaterials[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 968-972. doi: 10.3760/cma.j.cn501225-20220606-00221 |
[11] | Hu Yanke, Chen Shuying, Zhou Fei, Xiong Yahui, Chen Lei, Qi Shaohai. Progress in research and development of soft tissue three-dimensional bioprinting and its supporting equipment[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(11): 1090-1095. doi: 10.3760/cma.j.cn501120-20210922-00327 |
[12] | Lyu Guozhong, Zhao Peng. New bioactive materials for promoting wound repair and skin regeneration[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(12): 1105-1109. doi: 10.3760/cma.j.cn501120-20211029-00373 |
[13] | Cao Xiaozan, Xie Ting, Lu Shuliang. Receptor pathways of glycated basic fibroblast growth factor affecting the proliferation and vascularization of human dermal microvascular endothelial cells[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 17-24. doi: 10.3760/cma.j.cn501120-20200916-00412 |
[14] | Liu Kaituo, Hu Dahai. Research advances on the application of biocompatible materials in treating diabetic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 885-886. doi: 10.3760/cma.j.cn501120-20200619-00316 |
[15] | Zhang Chao, Li Zhao, Song Wei, Yao Bin, Enhejirigala, Zhang Mengde, Liang Liting, Jiang Yufeng, Fu Xiaobing, Huang Sha. Preliminary investigation on the wound healing effect of three-dimensional bioprinting ink containing human adipose-derived protein complexes[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(11): 1011-1023. doi: 10.3760/cma.j.cn501120-20210813-00282 |
[16] | Liu Lubing, Wen Huicai, Huang Jinjun, Xu Guizhen, Liao Huaiwei. Research advances on platelet-rich blood products combined with biological materials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(4): 395-400. doi: 10.3760/cma.j.cn501120-20200531-00291 |
[19] | Chen Haojiao, Wu Pan, Wang Xin′gang, Han Chunmao. Advances in the research of application of three-dimensional bioprinting in skin tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(6): 422-426. doi: 10.3760/cma.j.issn.1009-2587.2018.06.026 |
[20] | TIAN Jian-guang, BAI Dong-hai, LIU Zhi-guo, TANG Hong-tai, XIA Zhao-fan. Experimental studies on the biocompatibility of spongy PLGA-collagen membrane as a tissue-engineering dermal scaffold[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2003, 19(Z1): 1-4. doi: 10.3760/cma.j.issn.1009-2587.2003.Z1.101 |