Volume 39 Issue 4
Apr.  2023
Turn off MathJax
Article Contents
Chen LL,Yu SX,Ma J,et al.Research progress of biomaterials in promoting wound vascularization[J].Chin J Burns Wounds,2023,39(4):381-385.DOI: 10.3760/cma.j.cn501225-20220626-00261.
Citation: Chen LL,Yu SX,Ma J,et al.Research progress of biomaterials in promoting wound vascularization[J].Chin J Burns Wounds,2023,39(4):381-385.DOI: 10.3760/cma.j.cn501225-20220626-00261.

Research progress of biomaterials in promoting wound vascularization

doi: 10.3760/cma.j.cn501225-20220626-00261
Funds:

Guangdong Natural Science Foundation of China 2020A151501108

Key Field Research and Development Program of Guangdong Province of China 2020B1111150001

Provincial Science and Technology Project of Guangdong Province of China 2018KJYZ005

Natural Science Foundation of Tibet Autonomous Region of China XZ2017ZR-ZY021

More Information
  • Promoting rapid and good vascularization is still a great challenge for the research and development of biomaterials for wound repair. Current studies have shown that wound vascularization is closely related to the pores, components, and channels of biomaterials. Although the research and development of new medical functional materials have made rapid progress in recent years, and gratifying achievements have been made in the reconstruction of skin barrier function, regulation of wound microenvironment, and antibacterial and anti-inflammatory effects, etc., the problem of rapid wound vascularization has not been solved. This paper introduces the process of wound vascularization, the strategy of biomaterials promoting wound vascularization, the construction of biomaterials promoting wound vascularization based on three-dimensional printing technology, and the influence of nanotechnology on wound vascularization, in order to provide new enlightenment for research and development of wound repair materials with rapid vascularization in the future.

     

  • loading
  • [1]
    MiricescuD,BadoiuSC,ⅡStanescu-Spinu,et al.Growth factors, reactive oxygen species, and metformin-promoters of the wound healing process in burns?[J].Int J Mol Sci,2021,22(17):9512. DOI: 10.3390/ijms22179512.
    [2]
    WuM,LuZ,WuK,et al.Recent advances in the development of nitric oxide-releasing biomaterials and their application potentials in chronic wound healing[J].J Mater Chem B,2021,9(35):7063-7075.DOI: 10.1039/d1tb00847a.
    [3]
    ShahinH,ElmasryM,SteinvallI,et al.Vascularization is the next challenge for skin tissue engineering as a solution for burn management[J/OL].Burns Trauma,2020,8:tkaa022[2022-06-26].https://pubmed.ncbi.nlm.nih.gov/32766342/.DOI: 10.1093/burnst/tkaa022.
    [4]
    Masson-MeyersDS,TayebiL.Vascularization strategies in tissue engineering approaches for soft tissue repair[J].J Tissue Eng Regen Med,2021,15(9):747-762.DOI: 10.1002/term.3225.
    [5]
    WangY,FanY,LiuH.Macrophage polarization in response to biomaterials for vascularization[J].Ann Biomed Eng,2021,49(9):1992-2005.DOI: 10.1007/s10439-021-02832-w.
    [6]
    OmorphosNP,GaoC,TanSS,et al.Understanding angiogenesis and the role of angiogenic growth factors in the vascularisation of engineered tissues[J].Mol Biol Rep,2021,48(1):941-950.DOI: 10.1007/s11033-020-06108-9.
    [7]
    MarzianoC,GenetG,HirschiKK.Vascular endothelial cell specification in health and disease[J].Angiogenesis,2021,24(2):213-236.DOI: 10.1007/s10456-021-09785-7.
    [8]
    GonçalvesRC,BanfiA,OliveiraMB,et al.Strategies for re-vascularization and promotion of angiogenesis in trauma and disease[J].Biomaterials,2021,269:120628.DOI: 10.1016/j.biomaterials.2020.120628.
    [9]
    ChenL,LiZ,ZhengY,et al.3D-printed dermis-specific extracellular matrix mitigates scar contraction via inducing early angiogenesis and macrophage M2 polarization[J].Bioact Mater,2022,10:236-246.DOI: 10.1016/j.bioactmat.2021.09.008.
    [10]
    MinorAJ,CoulombeK.Engineering a collagen matrix for cell-instructive regenerative angiogenesis[J].J Biomed Mater Res B Appl Biomater,2020,108(6):2407-2416.DOI: 10.1002/jbm.b.34573.
    [11]
    NiuY,StadlerFJ,FangJ,et al.Hyaluronic acid-functionalized poly-lactic acid (PLA) microfibers regulate vascular endothelial cell proliferation and phenotypic shape expression[J].Colloids Surf B Biointerfaces,2021,206:111970.DOI: 10.1016/j.colsurfb.2021.111970.
    [12]
    GuoP,DuP,ZhaoP,et al.Regulating the mechanics of silk fibroin scaffolds promotes wound vascularization[J].Biochem Biophys Res Commun,2021,574:78-84.DOI: 10.1016/j.bbrc.2021.08.026.
    [13]
    CzerwinskiM,SpenceJR.Hacking the matrix[J].Cell Stem Cell,2017,20(1):9-10.DOI: 10.1016/j.stem.2016.12.010.
    [14]
    RahimnejadM,Nasrollahi BoroujeniN,JahangiriS,et al.Prevascularized micro-/nano-sized spheroid/bead aggregates for vascular tissue engineering[J].Nanomicro Lett,2021,13(1):182.DOI: 10.1007/s40820-021-00697-1.
    [15]
    YuR,ZhangH,GuoB.Conductive biomaterials as bioactive wound dressing for wound healing and skin tissue engineering[J].Nanomicro Lett,2021,14(1):1.DOI: 10.1007/s40820-021-00751-y.
    [16]
    谭荣伟,刘曦,陈滢滢,等.不同三维多孔结构对人工真皮血管化速率影响的实验研究[J].中华烧伤杂志,2021,37(10):959-969.DOI: 10.3760/cma.j.cn501120-20200715-00347.
    [17]
    MehdizadehH,SumoS,BayrakES,et al.Three-dimensional modeling of angiogenesis in porous biomaterial scaffolds[J].Biomaterials,2013,34(12):2875-2887.DOI: 10.1016/j.biomaterials.2012.12.047.
    [18]
    HernandezJL,WoodrowKA.Medical applications of porous biomaterials: features of porosity and tissue-specific implications for biocompatibility[J].Adv Healthc Mater,2022,11(9):e2102087.DOI: 10.1002/adhm.202102087.
    [19]
    GongT,ZhaoK,LiuX,et al.A dynamically tunable, bioinspired micropatterned surface regulates vascular endothelial and smooth muscle cells growth at vascularization[J].Small,2016,12(41):5769-5778.DOI: 10.1002/smll.201601503.
    [20]
    LiJ,ZhangT,PanM,et al.Nanofiber/hydrogel core-shell scaffolds with three-dimensional multilayer patterned structure for accelerating diabetic wound healing[J].J Nanobiotechnology,2022,20(1):28.DOI: 10.1186/s12951-021-01208-5.
    [21]
    LiJ,LiuX,TaoW,et al.Micropatterned composite membrane guides oriented cell growth and vascularization for accelerating wound healing[J].Regen Biomater,2023,10:rbac108.DOI: 10.1093/rb/rbac108.
    [22]
    KasetsirikuS,KetpunD,ChuahYJ,et al.Surface creasing-induced micropatterned gelma using heating-hydration fabrication for effective vascularization[J].Tissue Eng Regen Med,2021,18(5):759-773.DOI: 10.1007/s13770-021-00345-0.
    [23]
    GaoJ,YuX,WangX,et al.Biomaterial-related cell microenvironment in tissue engineering and regenerative medicine[J].Engineering,2022,13(6):31-45. DOI: 10.1016/j.eng.2021.11.025.
    [24]
    WangY,KankalaRK,OuC,et al.Advances in hydrogel-based vascularized tissues for tissue repair and drug screening[J].Bioact Mater,2022,9:198-220.DOI: 10.1016/j.bioactmat.2021.07.005.
    [25]
    DongL,YangY,LiuZ.3D printing of biomimetic vasculature for tissue regeneration[J]. Materials Horizons,2019,6(6):1197-1206. DOI: 10.1039/C9MH00174C.
    [26]
    FengC,ZhangW,DengC,et al.3D printing of lotus root-like biomimetic materials for cell delivery and tissue regeneration[J].Adv Sci (Weinh),2017,4(12):1700401.DOI: 10.1002/advs.201700401.
    [27]
    SuH,LiQ,LiD,et al.A versatile strategy to construct free-standing multi-furcated vessels and a complicated vascular network in heterogeneous porous scaffolds via combination of 3D printing and stimuli-responsive hydrogels[J].Mater Horiz,2022,9(9):2393-2407.DOI: 10.1039/d2mh00314g.
    [28]
    XiaP,LuoY.Vascularization in tissue engineering: the architecture cues of pores in scaffolds[J].J Biomed Mater Res B Appl Biomater,2022,110(5):1206-1214.DOI: 10.1002/jbm.b.34979.
    [29]
    JoshiA,ChoudhuryS,GugulothuSB,et al.Strategies to promote vascularization in 3D printed tissue scaffolds: trends and challenges[J].Biomacromolecules,2022,23(7):2730-2751.DOI: 10.1021/acs.biomac.2c00423.
    [30]
    YangQ,PengJ,XiaoH,et al.Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering[J].Carbohydr Polym,2022,278:118952.DOI: 10.1016/j.carbpol.2021.118952.
    [31]
    JungK,CorriganN,WongE,et al.Bioactive synthetic polymers[J].Adv Mater,2022,34(2):e2105063.DOI: 10.1002/adma.202105063.
    [32]
    AliabouzarM,LeyA,MeursS,et al.Micropatterning of acoustic droplet vaporization in acoustically-responsive scaffolds using extrusion-based bioprinting[J].Bioprinting,2022,25:e00188.DOI: 10.1016/j.bprint.2021.e00188.
    [33]
    YanezM,RinconJ,DonesA,et al.In vivo assessment of printed microvasculature in a bilayer skin graft to treat full-thickness wounds[J].Tissue Eng Part A,2015,21(1/2):224-233.DOI: 10.1089/ten.TEA.2013.0561.
    [34]
    KhannaA,AyanB,UndiehAA,et al.Advances in three-dimensional bioprinted stem cell-based tissue engineering for cardiovascular regeneration[J].J Mol Cell Cardiol,2022,169:13-27.DOI: 10.1016/j.yjmcc.2022.04.017.
    [35]
    LiC,HanX,MaZ,et al.Engineered customizable microvessels for progressive vascularization in large regenerative implants[J].Adv Healthc Mater,2022,11(4):e2101836.DOI: 10.1002/adhm.202101836.
    [36]
    LuoY, ZhangT, LinX.3D printed hydrogel scaffolds with macro pores and interconnected microchannel networks for tissue engineering vascularization[J]. Chemical Engineering Journal,2022, 430:1385-8947. DOI: 10.1016/j.cej.2021.132926.
    [37]
    ArakawaC,GunnarssonC,HowardC,et al.Biophysical and biomolecular interactions of malaria-infected erythrocytes in engineered human capillaries[J].Sci Adv,2020,6(3):eaay7243.DOI: 10.1126/sciadv.aay7243.
    [38]
    ZarubovaJ,Hasani-SadrabadiMM,BacakovaL,et al.Nano-in-micro dual delivery platform for chronic wound healing applications[J].Micromachines (Basel),2020,11(2):158.DOI: 10.3390/mi11020158.
    [39]
    XieZ,ParasCB,WengH,et al.Dual growth factor releasing multi-functional nanofibers for wound healing[J].Acta Biomater,2013,9(12):9351-9359.DOI: 10.1016/j.actbio.2013.07.030.
    [40]
    MooreMJ,TanRP,YangN,et al.Bioengineering artificial blood vessels from natural materials[J].Trends Biotechnol,2022,40(6):693-707.DOI: 10.1016/j.tibtech.2021.11.003.
    [41]
    WangC,ChuC,ZhaoX,et al.The diameter factor of aligned membranes facilitates wound healing by promoting epithelialization in an immune way[J].Bioact Mater,2022,11:206-217.DOI: 10.1016/j.bioactmat.2021.09.022.
    [42]
    QianS,WangJ,LiuZ,et al.Secretory fluid-aggregated Janus electrospun short fiber scaffold for wound healing[J].Small,2022,18(36):e2200799.DOI: 10.1002/smll.202200799.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (270) PDF downloads(48) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return