
Citation: | Chen JM,Chen M,Ren XC,et al.Research progress of metal micro-battery dressings in wound repair[J].Chin J Burns Wounds,2023,39(6):596-600.DOI: 10.3760/cma.j.cn501225-20220926-00416. |
基于生物材料的研发进展及其在医学中的应用,本文论述了生物材料已经成为创伤、烧伤与创面治疗领域新的研究方向,这一学科动态应引起学术界的高度重视。
Highlight:
Based on the research and development progress of biomaterials and their applications in medicine, this paper discusses that the biomaterials have become a new research direction in the fields of trauma, burns, and wound repair. This disciplinary dynamic should be highly valued by the academic community.
最近参加了领域内几次高水平学术会议,聆听了多位创伤、烧伤和创面修复领域专家有关生物材料研发与创伤、烧伤和创面治疗方面的研究报告,深受启发。结合近年来我对创伤、烧伤、创面修复领域学术发展的了解,感到以“伤”救治为特征的学科领域科学研究方向正在发生新的变化,即从过去单纯救“伤”而研究“伤”,拓展至生物材料、生物医学工程等与“伤”救治有关的新领域,特别是与生物材料的密切结合。这体现了跨行业、跨领域,以及多学科交叉融合特征。这些新的苗头和蓬勃发展趋势,有可能为未来临床创伤、烧伤与创面治疗的基础研究和临床治疗带来革命性的突破。该文结合自己的工作,就这一领域的发展进行论述,并对下一步学科发展提出了部分建议。
2012年,在张兴栋院士的邀请下,我参与了中国生物材料学会的创建工作。当时张兴栋院士告诉我,希望一些有医学背景的专家加入中国生物材料学会,把过去单纯的生物材料研究与医学应用密切结合起来。2017—2019年,我在担任中国生物材料学会理事长期间,以及我在协助中国研究型医院学会建设期间,曾经倡导发起成立了2个生物材料研发与创伤、烧伤和创面治疗及其转化应用的二级分会,其主要目的是搭建一个创伤、烧伤与创面修复与材料研发、应用的桥梁,从组织形式上进一步加强这些领域专家的融合。现在看来这个目标已经基本上达到了。目前,从学术交流的内容来看,已经展现出这方面的创新成果。如黄跃生教授团队主要围绕生物电场与力学微环境促进创面修复开展研究,研发的施加创面方向性电场装置已转化应用于临床,目前正进一步改进克服负压导致生物电场降低的不足。此外,他们基于有序再生皮肤的力学特性,研制的有序再生力学仿生丝蛋白材料,具有促进ECM、毛囊及皮脂腺再生作用[1]。吕国忠教授团队基于“医疗救援时空前移”理念,专注于生物材料应用于事故现场的紧急救治,初步成功研发精巧简约的手持式静电纺丝枪、纳米硅气凝胶结合相变微胶囊以及可原位快速生成适应各种类型创面的微纳米纤维等,有助于解决极端环境止血困境[2]。胡大海教授团队以创面修复空间靶向精准调控敷料为切入点,以微针敷料形成新型敷料为突破方向,在微针透皮系统实现靶向药物、细胞、分子递送调控以及创面病变组织与正常组织交界区域的立体定位、靶向调控敷料研发等方面形成优势[3]。罗高兴教授团队聚焦于创面止血与粘合、创面感染防治、创面损伤组织局部炎症反应水平调控以及瘢痕防治4个方面的研究。他们研发了一种抗菌肽/聚多巴胺/石墨烯的复合抗感染纳米材料,通过趋化捕获细菌再将其原位杀灭,进而促进感染创面的修复;研发的一种透明质酸酶响应释放抗菌肽的水凝胶,通过抗感染、保持创面湿度等,促进感染创面修复[4, 5]。申传安教授团队成功研发了含氧化铈纳米酶的功能化水凝胶,该水凝胶通过巨噬细胞重编程和血管化交互作用,实现创面炎症微环境的调控,能显著促进创面修复过程中的血管再生[6]。付小兵教授团队基于多种组织和器官在损伤部位的同步修复与再生理论,以构建体内外诱导再生环境为主攻方向,采用生物三维打印与基于DNA超分子水凝胶的再生导向人工皮肤,在模拟天然皮肤基质结构和机械特性、激发修复细胞再生行为和抑制纤维化反应等条件下,成功诱导汗腺、毛囊和皮脂腺3种皮肤附属器在损伤部位的同步修复与再生[7, 8]。吴军教授团队基于组织三维荧光成像和空间关系解析技术,首次实现了对皮肤超显微结构的原位立体展示、定量分析和空间关系解析,为下一步构建新的工程化修复材料奠定了基础[9]。此外,还有领域其他专家有很好的创新性成果,在此就不一一阐述了。
创新治疗技术与产品研发需要有创新的理论来指导。20世纪80、90年代,以保湿敷料(革命性敷料)和负压治疗技术等为代表的系列新技术和新产品被用于促进创面修复与再生,其基础理论主要是基于1962年英国学者Winter G.D.通过建立猪皮肤创面模型,提出在保证一定湿度的条件下,创面修复可以加速,而创面细菌感染的风险又不会增加的理论,即著名的湿性愈合理论。这个理论被用于指导了近半个世纪创面治疗技术和产品的研发。20世纪90年代,我们基于生长因子是体内存在的,可以直接作用于修复细胞,调控其增殖与分化特征,提出创面愈合是可以加速的理论,由此来指导了以生长因子为代表的生物治疗产品促进创面修复的研究[10, 11, 12]。在此基础上,国内研发了10余种用于创面修复的生长因子产品,初步统计到目前为止治疗患者超过1亿人次。2001年,我们首先发现并在国际上报告了表皮细胞去分化现象,这被《新英格兰医学杂志》称为“是组织修复与再生的第4种机制解释”等,为组织修复与再生提供了重要的理论根据[13]。基于表皮细胞去分化的原创性理论,我们建立了系列诱导已经分化的成体细胞去分化为组织修复与再生功能性细胞的关键技术,在国际上实现了诱导骨髓间充质干细胞、表皮细胞、Fb等转变为汗腺样细胞,进而再生功能性汗腺的目标[14]。在此基础上,我又提出了更高的医学目标,即要实现多种组织在损伤部位的同步修复与再生,以及完美修复与再生。我们团队根据这一理论指导,开展了在体内外同步实现皮肤汗腺、毛囊以及皮脂腺3种皮肤附属器同步修复与再生研究,已经取得重要阶段性成果[7, 8]。因此,与将生长因子直接作用于组织修复细胞上受体调控其增殖与分化不同,采用创新材料,生物敷料、生物三维打印等,都是在构建一个有利于组织修复和再生的微环境,或者恢复组织修复、再生与发育的内环境,为修复与再生创造条件,我们将其基础理论称为“诱导性组织修复与再生”。因此,现在以及将来一段时间,可以在这一理论指导下来开展创新材料和组织修复与再生的基础研究与临床治疗。
新的时代我们需要有创新的理论来指导。在学科建设上,我们曾经提出了“战时治烧伤,平时治创面”[15],为烧伤学科转型发展和中国特色创面修复学科体系建设提供了依据。在开展具有中国特色的创面修复创新技术与治疗产品研发方面,以“诱导性组织修复与再生”为理论基础的相关研究正在开展,其目的是达到“完美修复与再生”的创伤医学的最高治疗目标,同时,它与广大人民群众对创伤治疗的期盼,即使损伤组织“恢复到损伤以前的解剖结构与功能状态”的要求是完全一致的。当前在这一领域科研转型的关键时刻,我认为领域专家需要注意以下几点。
在选题上需要从解决临床治疗问题出发,解决目前制约创伤、烧伤与创面治疗的难点。根据临床需求提出科学问题,以创新技术和产品解决临床难题。只有做到需求与研发结合、基础与临床并进、转化与应用齐飞、风险与利益共担、成果与效益共享,才能够做出创新成果,研发出创新的治疗产品。
要与材料生物学家密切合作,用他们的理论、技术和方法来解决医学的难题。与生物材料专家密切合作是成功的基础。现在看来,许多医学的问题,医学专家本身可能难以解决,需要借助其他学科的理论、技术、方法和人才等才能解决。以前我曾经在学术交流中讲到,创伤、烧伤和创面治疗的许多难题,可能最终需要依靠人工智能、生物材料以及先进制造等领域的成果。比如,目前我国体表慢性难愈合创面的治愈率在94%左右,即还有6%左右的创面采用目前的治疗体系难以愈合。因此,攻克创面治疗“最后一公里”的难题,可能在于创新材料方面。
与企业家密切合作,从研发起始阶段就把研发产品的理念、理论、技术、转化和临床构成一个有机的整体,超前开展部署,这样利于成果的快速转化和应用于临床。以前专家的研究主要在实验室,或者临床医师只关注临床,忽略了成果转化应用的整体性,这是在新的历史时期应当关注的重要问题。
在研发中注意知识产权的保护和应用。现在国家鼓励科研人员把相关研发成果转化为产品服务于国家重大需求,并且出台了系列优惠政策。需要提醒的是,在科技成果快速转化应用过程中,科研人员本身对成果转化过程中相关政策与规范并不完全了解。因此,需要得到专业人员的帮助,以保证科研人员的创造性劳动得到合理的回报。
注意法规和伦理道德方面的约束。创新与关注伦理道德和法规并不冲突。创新产品的应用,不是以牺牲患者的利益为代价。因此,在生物材料及其产品研发与应用于创伤、烧伤和创面治疗时,既要创新和突破传统,也需要平衡患者获益以及可能带来的风险,做到利益最大化、风险最小或没有风险。
[1] |
LuoR, DaiJ, ZhangJ, et al. Accelerated skin wound healing by electrical stimulation[J]. Adv Healthc Mater, 2021,10(16):e2100557. DOI: 10.1002/adhm.202100557.
|
[2] |
WangH, LiuY, CaiK, et al. Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab041[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/34988231/. DOI: 10.1093/burnst/tkab041.
|
[3] |
XuN, YuanY, DingL, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma, 2022,10:tkac019[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/35910193/. DOI: 10.1093/burnst/tkac019.
|
[4] |
WangY, YinM, LiZ, et al. Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications[J]. Colloids Surf B Biointerfaces, 2018,165:199-206. DOI: 10.1016/j.colsurfb.2018.02.045.
|
[5] |
董晓蒙, 高晶, 孙沁, 等. 内源性电场及其生物学意义[J].生物化学与生物物理进展,2016,43(8):731-738. DOI: 10.16476/j.pibb.2016.0100.
|
[6] |
王文平, 冀然, 张泽, 等. 生物强度电场对人皮肤成纤维细胞转化的调节作用[J].中华烧伤与创面修复杂志,2022,38(4):354-362. DOI: 10.3760/cma.j.cn501120-20210112-00017.
|
[7] |
WahlstenO, SkibaJ, MakinI, et al. Electrical field landscape of two electroceuticals[J]. J Electr Bioimpedance, 2016, 7(1):13.
|
[8] |
QuJ, ZhaoX, LiangYP, et al. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing[J]. CHEN ENG J, 2019,362:548-560. DOI: 10.1016/j.cej.2019.01.028.
|
[9] |
DuS, ZhouNY, GaoYJ, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nano-generator for promoting skin wound healing[J]. NANO RES, 2020, 13(9):2525-2533. DOI: 10.1007/s12274-020-2891-9.
|
[10] |
LiuS, LiJ, ZhangS, et al. Template-assisted magnetron sputtering of cotton nonwovens for wound healing application[J]. ACS Appl Bio Mater, 2020,3(2):848-858. DOI: 10.1021/acsabm.9b00942.
|
[11] |
FengY, WangN, HeT, et al. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: a possible antibacterial layer for personal protective face masks[J]. ACS Appl Mater Interfaces, 2021,13(49):59196-59205. DOI: 10.1021/acsami.1c15113.
|
[12] |
TaiG, TaiM, ZhaoM. Electrically stimulated cell migration and its contribution to wound healing[J/OL]. Burns Trauma,2018, 6:20[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/30003115/. DOI: 10.1186/s41038-018-0123-2.
|
[13] |
FrelingerAL, GerritsAJ, GarnerAL, et al. Modification of pulsed electric field conditions results in distinct activation profiles of platelet-rich plasma[J]. PLoS One, 2016,11(8):e0160933. DOI: 10.1371/journal.pone.0160933.
|
[14] |
LeeJW, YoonSW, KimTH, et al. The effects of microcurrents on inflammatory reaction induced by ultraviolet irradiation[J]. J Phys Ther Sci, 2011, 23 (4):693-696. DOI: 10.1589/jpts.23.693.
|
[15] |
吕大伦, 徐姝娟, 丁伟, 等. 慢性难愈合创面病原微生物分布及其耐药性分析[J].中华烧伤杂志,2015,31(4):290-292. DOI: 10.3760/cma.j.issn.1009-2587.2015.04.014.
|
[16] |
AsadiMR, TorkamanG, HedayatiM. Effect of sensory and motor electrical stimulation in vascular endothelial growth factor expression of muscle and skin in full-thickness wound[J]. J Rehabil Res Dev, 2011,48(3):195-201. DOI: 10.1682/jrrd.2009.11.0182.
|
[17] |
SebastianA, SyedF, PerryD, et al. Acceleration of cutaneous healing by electrical stimulation: degenerate electrical waveform down-regulates inflammation, up-regulates angiogenesis and advances remodeling in temporal punch biopsies in a human volunteer study[J]. Wound Repair Regen, 2011,19(6):693-708. DOI: 10.1111/j.1524-475X.2011.00736.x.
|
[18] |
BanerjeeJ, Das GhatakP, RoyS, et al. Improvement of human keratinocyte migration by a redox active bioelectric dressing[J]. PLoS One, 2014,9(3):e89239. DOI: 10.1371/journal.pone.0089239.
|
[19] |
TandonN, CimettaE, VillasanteA, et al. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway[J]. Exp Cell Res, 2014,320(1):79-91. DOI: 10.1016/j.yexcr.2013.09.016.
|
[20] |
WeissDS, EaglsteinWH, FalangaV. Exogenous electric current can reduce the formation of hypertrophic scars[J]. J Dermatol Surg Oncol, 1989,15(12):1272-1275. DOI: 10.1111/j.1524-4725.1989.tb03146.x.
|
[21] |
ThawerHA, HoughtonPE. Effects of electrical stimulation on the histological properties of wounds in diabetic mice[J]. Wound Repair Regen, 2001,9(2):107-115. DOI: 10.1046/j.1524-475x.2001.00107.x.
|
[22] |
LiangJ, ZengH, QiaoL, et al. 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing[J]. ACS Appl Mater Interfaces, 2022,14(27):30507-30522. DOI: 10.1021/acsami.2c04168.
|
[23] |
曾帅丹, 杨磊. 各种组学分析在体表慢性难愈合创面中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(1): 75-80. DOI: 10.3760/cma.j.cn501225-20220216-00030.
|
[24] |
ParkSS, KimH, MakinIR, et al. Measurement of microelectric potentials in a bioelectrically-active wound care device in the presence of bacteria[J]. J Wound Care, 2015,24(1):23-33. DOI: 10.12968/jowc.2015.24.1.23.
|
[25] |
ZhangS, DongH, HeR, et al. Hydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applications[J]. Int J Biol Macromol, 2022,207:100-109. DOI: 10.1016/j.ijbiomac.2022.02.155.
|
[26] |
DongHB, ZhangSH, YangLG, et al. Cu/Zn galvanic couples composite antibacterial dressings prepared by template-assisted magnetron sputtering[J]. COMPOS PART B-ENG, 2021, 224:109240. DOI: https://doi.org/10.1016/j.compositesb.2021.109240.
|
[27] |
LiuSP, ZhangSH, YangLG, et al. Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: a novel biocompatible platform for antibacterial application[J]. J CLEAN PROD, 2021, 315:128201. DOI: 10.1016/j.jclepro.2021.128201.
|
[28] |
KimH, MakinI, SkibaJ, et al. Antibacterial efficacy testing of a bioelectric wound dressing against clinical wound pathogens[J]. Open Microbiol J, 2014,8:15-21. DOI: 10.2174/1874285801408010015.
|
[29] |
KhonaDK, RoyS, GhatakS, et al. Ketoconazole resistant Candida albicans is sensitive to a wireless electroceutical wound care dressing[J]. Bioelectrochemistry, 2021,142:107921. DOI: 10.1016/j.bioelechem.2021.107921.
|
[30] |
LiJW, FengYJ, ChenWC, et al. Electroactive materials: innovative antibacterial platforms for biomedical applications[J]. PROG MATER SCI, 2022, 132:101045. DOI: 10.1016/j.pmatsci.2022.101045.
|
[31] |
GhatakPD, SchlangerR, GaneshK, et al. A wireless electroceutical dressing lowers cost of negative pressure wound therapy[J]. Adv Wound Care (New Rochelle), 2015,4(5):302-311. DOI: 10.1089/wound.2014.0615.
|
[32] |
BarkiKG, DasA, DixithS, et al. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing[J]. Ann Surg, 2019,269(4):756-766. DOI: 10.1097/SLA.0000000000002504.
|
[33] |
TanSJ, HuangZZ, WangJJ, et al. Biological evaluation of microcurrent wound dressing based on printed silver and zinc electrodes[J]. TEXT RES J, 2021, 91 (19/20):2345-2356. DOI: 10.1177/00405175211003988.
|
[34] |
YuC, XuZX, HaoYH, et al. A novel microcurrent dressing for wound healing in a rat skin defect model[J]. Mil Med Res, 2019,6(1):22. DOI: 10.1186/s40779-019-0213-x.
|
[35] |
ZhangSH, ZhangQ, ChenJM, et al. Cost-effective chitosan thermal bonded nonwovens serving as an anti-viral inhibitor layer in face mask[J]. MATER LETT, 2022, 318:132203. DOI: 10.1016/j.matlet.2022.132203.
|
[36] |
ZengQ, QiX, ShiG, et al. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations[J]. ACS Nano, 2022,16(2):1708-1733. DOI: 10.1021/acsnano.1c08411.
|
[37] |
刘江, 刘毅. 壳聚糖纳米纤维创面敷料的研究进展[J]. 中华烧伤杂志, 2020, 36(7): 627-630. DOI: 10.3760/cma.j.cn501120-20190628-00286.
|
[38] |
LongC, QingYQ, LiSH, et al. Asymmetric composite wound nanodressing with superhydrophilic/superhydrophobic alternate pattern for reducing blood loss and adhesion[J]. COMPOS PART B-ENG, 2021, 223:109134. DOI: 10.1016/j.compositesb.2021.109134.
|
[39] |
LiS, ChenA, ChenY, et al. Lotus leaf inspired antiadhesive and antibacterial gauze for enhanced infected dermal wound regeneration[J]. CHEM ENG J, 2020,402:126202-126201-126202-11. DOI: 10.1016/j.cej.2020.126202.
|