Volume 39 Issue 6
Jun.  2023
Turn off MathJax
Article Contents
Chen JM,Chen M,Ren XC,et al.Research progress of metal micro-battery dressings in wound repair[J].Chin J Burns Wounds,2023,39(6):596-600.DOI: 10.3760/cma.j.cn501225-20220926-00416.
Citation: Chen JM,Chen M,Ren XC,et al.Research progress of metal micro-battery dressings in wound repair[J].Chin J Burns Wounds,2023,39(6):596-600.DOI: 10.3760/cma.j.cn501225-20220926-00416.

Research progress of metal micro-battery dressings in wound repair

doi: 10.3760/cma.j.cn501225-20220926-00416
Funds:

Youth Science Foundation Program of National Natural Science Foundation of China 52203060

Innovation Team of Shandong Province Higher Education Institution Youth Innovation Science and Technology Support Program 2022KJ152

The fellowship of China Postdoctoral Science Foundation 2022M711735

Qingdao City South District Science and Technology Plan Project 2022-3-009-SW

More Information
  • Corresponding author: Li Jiwei, Email: jiweili@qdu.edu.cn
  • Received Date: 2022-09-26
    Available Online: 2023-06-25
  • To develop the dressings that can both inhibit bacterial infection and actively promote healing is of great importance for wound repair and the development of medical technology. Electrical stimulation has multiple roles in wound healing, including hemostasis, antibacterial, anti-inflammatory, guidance of cell migration, promotion of re-epithelialization, and proliferation of cells. Metal micro-battery can provide a stable source of electrical stimulation energy without an external power source. Thus, the integration of metal micro-battery with medical dressings opens up new opportunities for the wireless application of electrical stimulation in wound repair. In this review, the mechanism of the effect of electrical stimulation on wound healing is systematically presented, then recent advances in metal micro-battery dressings, including preparation methods, antibacterial performance, and healing properties are mainly introduced, and the current challenges and prospects of metal micro-battery dressings are also provided.

     

  • loading
  • [1]
    LuoR, DaiJ, ZhangJ, et al. Accelerated skin wound healing by electrical stimulation[J]. Adv Healthc Mater, 2021,10(16):e2100557. DOI: 10.1002/adhm.202100557.
    [2]
    WangH, LiuY, CaiK, et al. Antibacterial polysaccharide-based hydrogel dressing containing plant essential oil for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab041[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/34988231/. DOI: 10.1093/burnst/tkab041.
    [3]
    XuN, YuanY, DingL, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma, 2022,10:tkac019[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/35910193/. DOI: 10.1093/burnst/tkac019.
    [4]
    WangY, YinM, LiZ, et al. Preparation of antimicrobial and hemostatic cotton with modified mesoporous particles for biomedical applications[J]. Colloids Surf B Biointerfaces, 2018,165:199-206. DOI: 10.1016/j.colsurfb.2018.02.045.
    [5]
    董晓蒙, 高晶, 孙沁, 等. 内源性电场及其生物学意义[J].生物化学与生物物理进展,2016,43(8):731-738. DOI: 10.16476/j.pibb.2016.0100.
    [6]
    王文平, 冀然, 张泽, 等. 生物强度电场对人皮肤成纤维细胞转化的调节作用[J].中华烧伤与创面修复杂志,2022,38(4):354-362. DOI: 10.3760/cma.j.cn501120-20210112-00017.
    [7]
    WahlstenO, SkibaJ, MakinI, et al. Electrical field landscape of two electroceuticals[J]. J Electr Bioimpedance, 2016, 7(1):13.
    [8]
    QuJ, ZhaoX, LiangYP, et al. Degradable conductive injectable hydrogels as novel antibacterial, anti-oxidant wound dressings for wound healing[J]. CHEN ENG J, 2019,362:548-560. DOI: 10.1016/j.cej.2019.01.028.
    [9]
    DuS, ZhouNY, GaoYJ, et al. Bioinspired hybrid patches with self-adhesive hydrogel and piezoelectric nano-generator for promoting skin wound healing[J]. NANO RES, 2020, 13(9):2525-2533. DOI: 10.1007/s12274-020-2891-9.
    [10]
    LiuS, LiJ, ZhangS, et al. Template-assisted magnetron sputtering of cotton nonwovens for wound healing application[J]. ACS Appl Bio Mater, 2020,3(2):848-858. DOI: 10.1021/acsabm.9b00942.
    [11]
    FengY, WangN, HeT, et al. Ag/Zn galvanic couple cotton nonwovens with breath-activated electroactivity: a possible antibacterial layer for personal protective face masks[J]. ACS Appl Mater Interfaces, 2021,13(49):59196-59205. DOI: 10.1021/acsami.1c15113.
    [12]
    TaiG, TaiM, ZhaoM. Electrically stimulated cell migration and its contribution to wound healing[J/OL]. Burns Trauma,2018, 6:20[2022-09-26]. https://pubmed.ncbi.nlm.nih.gov/30003115/. DOI: 10.1186/s41038-018-0123-2.
    [13]
    FrelingerAL, GerritsAJ, GarnerAL, et al. Modification of pulsed electric field conditions results in distinct activation profiles of platelet-rich plasma[J]. PLoS One, 2016,11(8):e0160933. DOI: 10.1371/journal.pone.0160933.
    [14]
    LeeJW, YoonSW, KimTH, et al. The effects of microcurrents on inflammatory reaction induced by ultraviolet irradiation[J]. J Phys Ther Sci, 2011, 23 (4):693-696. DOI: 10.1589/jpts.23.693.
    [15]
    吕大伦, 徐姝娟, 丁伟, 等. 慢性难愈合创面病原微生物分布及其耐药性分析[J].中华烧伤杂志,2015,31(4):290-292. DOI: 10.3760/cma.j.issn.1009-2587.2015.04.014.
    [16]
    AsadiMR, TorkamanG, HedayatiM. Effect of sensory and motor electrical stimulation in vascular endothelial growth factor expression of muscle and skin in full-thickness wound[J]. J Rehabil Res Dev, 2011,48(3):195-201. DOI: 10.1682/jrrd.2009.11.0182.
    [17]
    SebastianA, SyedF, PerryD, et al. Acceleration of cutaneous healing by electrical stimulation: degenerate electrical waveform down-regulates inflammation, up-regulates angiogenesis and advances remodeling in temporal punch biopsies in a human volunteer study[J]. Wound Repair Regen, 2011,19(6):693-708. DOI: 10.1111/j.1524-475X.2011.00736.x.
    [18]
    BanerjeeJ, Das GhatakP, RoyS, et al. Improvement of human keratinocyte migration by a redox active bioelectric dressing[J]. PLoS One, 2014,9(3):e89239. DOI: 10.1371/journal.pone.0089239.
    [19]
    TandonN, CimettaE, VillasanteA, et al. Galvanic microparticles increase migration of human dermal fibroblasts in a wound-healing model via reactive oxygen species pathway[J]. Exp Cell Res, 2014,320(1):79-91. DOI: 10.1016/j.yexcr.2013.09.016.
    [20]
    WeissDS, EaglsteinWH, FalangaV. Exogenous electric current can reduce the formation of hypertrophic scars[J]. J Dermatol Surg Oncol, 1989,15(12):1272-1275. DOI: 10.1111/j.1524-4725.1989.tb03146.x.
    [21]
    ThawerHA, HoughtonPE. Effects of electrical stimulation on the histological properties of wounds in diabetic mice[J]. Wound Repair Regen, 2001,9(2):107-115. DOI: 10.1046/j.1524-475x.2001.00107.x.
    [22]
    LiangJ, ZengH, QiaoL, et al. 3D printed piezoelectric wound dressing with dual piezoelectric response models for scar-prevention wound healing[J]. ACS Appl Mater Interfaces, 2022,14(27):30507-30522. DOI: 10.1021/acsami.2c04168.
    [23]
    曾帅丹, 杨磊. 各种组学分析在体表慢性难愈合创面中的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(1): 75-80. DOI: 10.3760/cma.j.cn501225-20220216-00030.
    [24]
    ParkSS, KimH, MakinIR, et al. Measurement of microelectric potentials in a bioelectrically-active wound care device in the presence of bacteria[J]. J Wound Care, 2015,24(1):23-33. DOI: 10.12968/jowc.2015.24.1.23.
    [25]
    ZhangS, DongH, HeR, et al. Hydro electroactive Cu/Zn coated cotton fiber nonwovens for antibacterial and antiviral applications[J]. Int J Biol Macromol, 2022,207:100-109. DOI: 10.1016/j.ijbiomac.2022.02.155.
    [26]
    DongHB, ZhangSH, YangLG, et al. Cu/Zn galvanic couples composite antibacterial dressings prepared by template-assisted magnetron sputtering[J]. COMPOS PART B-ENG, 2021, 224:109240. DOI: https://doi.org/10.1016/j.compositesb.2021.109240.
    [27]
    LiuSP, ZhangSH, YangLG, et al. Nanofibrous scaffold by cleaner magnetron-sputtering additive manufacturing: a novel biocompatible platform for antibacterial application[J]. J CLEAN PROD, 2021, 315:128201. DOI: 10.1016/j.jclepro.2021.128201.
    [28]
    KimH, MakinI, SkibaJ, et al. Antibacterial efficacy testing of a bioelectric wound dressing against clinical wound pathogens[J]. Open Microbiol J, 2014,8:15-21. DOI: 10.2174/1874285801408010015.
    [29]
    KhonaDK, RoyS, GhatakS, et al. Ketoconazole resistant Candida albicans is sensitive to a wireless electroceutical wound care dressing[J]. Bioelectrochemistry, 2021,142:107921. DOI: 10.1016/j.bioelechem.2021.107921.
    [30]
    LiJW, FengYJ, ChenWC, et al. Electroactive materials: innovative antibacterial platforms for biomedical applications[J]. PROG MATER SCI, 2022, 132:101045. DOI: 10.1016/j.pmatsci.2022.101045.
    [31]
    GhatakPD, SchlangerR, GaneshK, et al. A wireless electroceutical dressing lowers cost of negative pressure wound therapy[J]. Adv Wound Care (New Rochelle), 2015,4(5):302-311. DOI: 10.1089/wound.2014.0615.
    [32]
    BarkiKG, DasA, DixithS, et al. Electric field based dressing disrupts mixed-species bacterial biofilm infection and restores functional wound healing[J]. Ann Surg, 2019,269(4):756-766. DOI: 10.1097/SLA.0000000000002504.
    [33]
    TanSJ, HuangZZ, WangJJ, et al. Biological evaluation of microcurrent wound dressing based on printed silver and zinc electrodes[J]. TEXT RES J, 2021, 91 (19/20):2345-2356. DOI: 10.1177/00405175211003988.
    [34]
    YuC, XuZX, HaoYH, et al. A novel microcurrent dressing for wound healing in a rat skin defect model[J]. Mil Med Res, 2019,6(1):22. DOI: 10.1186/s40779-019-0213-x.
    [35]
    ZhangSH, ZhangQ, ChenJM, et al. Cost-effective chitosan thermal bonded nonwovens serving as an anti-viral inhibitor layer in face mask[J]. MATER LETT, 2022, 318:132203. DOI: 10.1016/j.matlet.2022.132203.
    [36]
    ZengQ, QiX, ShiG, et al. Wound dressing: from nanomaterials to diagnostic dressings and healing evaluations[J]. ACS Nano, 2022,16(2):1708-1733. DOI: 10.1021/acsnano.1c08411.
    [37]
    刘江, 刘毅. 壳聚糖纳米纤维创面敷料的研究进展[J]. 中华烧伤杂志, 2020, 36(7): 627-630. DOI: 10.3760/cma.j.cn501120-20190628-00286.
    [38]
    LongC, QingYQ, LiSH, et al. Asymmetric composite wound nanodressing with superhydrophilic/superhydrophobic alternate pattern for reducing blood loss and adhesion[J]. COMPOS PART B-ENG, 2021, 223:109134. DOI: 10.1016/j.compositesb.2021.109134.
    [39]
    LiS, ChenA, ChenY, et al. Lotus leaf inspired antiadhesive and antibacterial gauze for enhanced infected dermal wound regeneration[J]. CHEM ENG J, 2020,402:126202-126201-126202-11. DOI: 10.1016/j.cej.2020.126202.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (323) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return