Volume 39 Issue 9
Sep.  2023
Turn off MathJax
Article Contents
Tao YB,Shi KQ,Xiao J.Research progress of biomaterials with ordered micro-nano structure in wound repair[J].Chin J Burns Wounds,2023,39(9):896-900.DOI: 10.3760/cma.j.cn501225-20221017-00455.
Citation: Tao YB,Shi KQ,Xiao J.Research progress of biomaterials with ordered micro-nano structure in wound repair[J].Chin J Burns Wounds,2023,39(9):896-900.DOI: 10.3760/cma.j.cn501225-20221017-00455.

Research progress of biomaterials with ordered micro-nano structure in wound repair

doi: 10.3760/cma.j.cn501225-20221017-00455
Funds:

Industry-University-Research Inno-vation Fund for Chinese Universities 2021JH041

Approved Key Project of Basic Scientific Research Fund of Wenzhou Medical University KYYW202108

More Information
  • Corresponding author: Xiao Jian, Email: xfxj2000@126.com
  • Received Date: 2022-10-17
  • Many injury-causing factors, including burns and surgery, etc., can lead to the destruction of structure and function of skin. Suitable wound dressing or implant is the material basis to promote wound healing and regeneration. Biomaterials with micro-nano structure can affect cell behavior, promote orderly growth of cell in accordance with the structure. Their application in wound healing can promote angiogenesis, regulate immune response, and reduce scar area. In recent years, the application of biomaterials with ordered micro-nano structure in tissue engineering has attracted extensive attention. This paper introduces the structure and preparation methods of several biomaterials with ordered micro-nano structure, and focuses on how the surface microstructure of biomaterials affects the process of wound healing and its molecular mechanism, in order to find and develop medical biomaterials that are closer to the skin tissue structure for clinical wound treatment.

     

  • loading
  • [1]
    VeithAP,HendersonK,SpencerA,et al.Therapeutic strategies for enhancing angiogenesis in wound healing[J].Adv Drug Deliv Rev,2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
    [2]
    WengW,HeS,SongH,et al.Aligned carbon nanotubes reduce hypertrophic scar via regulating cell behavior[J].ACS Nano,2018,12(8):7601-7612.DOI: 10.1021/acsnano.7b07439.
    [3]
    XuJ,ZanvitP,HuL,et al.The cytokine TGF-β induces interleukin-31 expression from dermal dendritic cells to activate sensory neurons and stimulate wound itching[J].Immunity,2020,53(2):371-383.e5.DOI: 10.1016/j.immuni.2020.06.023.
    [4]
    AtiyehBS,HayekSN,GunnSW.New technologies for burn wound closure and healing--review of the literature[J].Burns,2005,31(8):944-956.DOI: 10.1016/j.burns.2005.08.023.
    [5]
    翁婷婷,蔡程浩,韩春茂,等.生物材料递送生长因子调控创面修复的研究进展[J].中华烧伤与创面修复杂志,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.
    [6]
    ChengRY,EylertG,GariepyJM,et al.Handheld instrument for wound-conformal delivery of skin precursor sheets improves healing in full-thickness burns[J].Biofabrication,2020,12(2):025002.DOI: 10.1088/1758-5090/ab6413.
    [7]
    ShinMJ,ImSH,KimB,et al.Fabrication of scratched nanogrooves for highly oriented cell alignment and application as a wound healing dressing[J].ACS Appl Mater Interfaces,2023,15(15):18653-18662.DOI: 10.1021/acsami.3c00530.
    [8]
    WangZC,ZhaoWY,CaoY,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.DOI: 10.3389/fimmu.2020.603187.
    [9]
    XuX,LaiL,ZhangX,et al.Autologous chyle fat grafting for the treatment of hypertrophic scars and scar-related conditions[J].Stem Cell Res Ther,2018,9(1):64.DOI: 10.1186/s13287-018-0782-8.
    [10]
    PissarenkoA,YangW,QuanH,et al.Tensile behavior and structural characterization of pig dermis[J].Acta Biomater,2019,86:77-95.DOI: 10.1016/j.actbio.2019.01.023.
    [11]
    解健,苏俭生.静电纺丝取向纳米纤维作为组织工程生物支架的优势与特征[J].中国组织工程研究,2021,25(16):2575-2581.
    [12]
    NakanishiJ,TakaradaT,YamaguchiK,et al.Recent advances in cell micropatterning techniques for bioanalytical and biomedical sciences[J].Anal Sci,2008,24(1):67-72.DOI: 10.2116/analsci.24.67.
    [13]
    QinS,RicottaV,SimonM,et al.Continual cell deformation induced via attachment to oriented fibers enhances fibroblast cell migration[J].PLoS One,2015,10(3):e0119094.DOI: 10.1371/journal.pone.0119094.
    [14]
    ChenK,PanH,JiD,et al.Curcumin-loaded sandwich-like nanofibrous membrane prepared by electrospinning technology as wound dressing for accelerate wound healing[J].Mater Sci Eng C Mater Biol Appl,2021,127:112245.DOI: 10.1016/j.msec.2021.112245.
    [15]
    ZhangYS,ZhuC,XiaY.Inverse opal scaffolds and their biomedical applications[J].Adv Mater,2017,29(33): 10.1002/adma.201701115.DOI: 10.1002/adma.201701115.
    [16]
    ChenC,WangY,ZhangH,et al.Responsive and self-healing structural color supramolecular hydrogel patch for diabetic wound treatment[J].Bioact Mater,2022,15:194-202.DOI: 10.1016/j.bioactmat.2021.11.037.
    [17]
    CaiJ,ZhangH,HuY,et al.GelMA-MXene hydrogel nerve conduits with microgrooves for spinal cord injury repair[J]. J Nanobiotechnology,2022,20(1):460.DOI: 10.1186/s12951-022-01669-2.
    [18]
    RicciC,AzimiB,PanarielloL,et al.Assessment of electrospun poly(ε-caprolactone) and poly(lactic acid) fiber scaffolds to generate 3D in vitro models of colorectal adenocarcinoma: a preliminary study[J].Int J Mol Sci,2023,24(11):9443.DOI: 10.3390/ijms24119443.
    [19]
    WalserJ,FergusonSJ.Oriented nanofibrous membranes for tissue engineering applications: electrospinning with secondary field control[J].J Mech Behav Biomed Mater,2016,58:188-198.DOI: 10.1016/j.jmbbm.2015.06.027.
    [20]
    WangL,SunL,BianF,et al.Self-bonded hydrogel inverse opal particles as sprayed flexible patch for wound healing[J].ACS Nano,2022,16(2):2640-2650.DOI: 10.1021/acsnano.1c09388.
    [21]
    KimJ,BaeWG,KimYJ,et al.Directional matrix nanotopography with varied sizes for engineering wound healing[J].Adv Healthc Mater,2017,6(19):1700297.DOI: 10.1002/adhm.201700297.
    [22]
    HomaeigoharS,LiM,BoccacciniAR.Bioactive glass-based fibrous wound dressings[J/OL].Burns Trauma,2022,10:tkac038[2022-10-17].https://pubmed.ncbi.nlm.nih.gov/36196303/.DOI: 10.1093/burnst/tkac038.
    [23]
    HassibaAJ,El ZowalatyME,NasrallahGK,et al.Review of recent research on biomedical applications of electrospun polymer nanofibers for improved wound healing[J].Nanomedicine (Lond),2016,11(6):715-737.DOI: 10.2217/nnm.15.211.
    [24]
    KimHN,HongY,KimMS,et al.Effect of orientation and density of nanotopography in dermal wound healing[J].Biomaterials,2012,33(34):8782-8792.DOI: 10.1016/j.biomaterials.2012.08.038.
    [25]
    SunL,LiJ,GaoW,et al.Coaxial nanofibrous scaffolds mimicking the extracellular matrix transition in the wound healing process promoting skin regeneration through enhancing immunomodulation[J].J Mater Chem B,2021,9(5):1395-1405.DOI: 10.1039/d0tb01933j.
    [26]
    ShinYM,ShinHJ,HeoY,et al.Engineering an aligned endothelial monolayer on a topologically modified nanofibrous platform with a micropatterned structure produced by femtosecond laser ablation[J].J Mater Chem B,2017,5(2):318-328.DOI: 10.1039/c6tb02258h.
    [27]
    LamersE,WalboomersXF,DomanskiM,et al.In vitro and in vivo evaluation of the inflammatory response to nanoscale grooved substrates[J].Nanomedicine,2012,8(3):308-317.DOI: 10.1016/j.nano.2011.06.013.
    [28]
    LuuTU,GottSC,WooBW,et al.Micro- and nanopatterned topographical cues for regulating macrophage cell shape and phenotype[J].ACS Appl Mater Interfaces,2015,7(51):28665-28672.DOI: 10.1021/acsami.5b10589.
    [29]
    Nouri-GoushkiM,IsaakidouA,EijkelB,et al.3D printed submicron patterns orchestrate the response of macrophages[J].Nanoscale,2021,13(34):14304-14315.DOI: 10.1039/d1nr01557e.
    [30]
    BiH,LiH,ZhangC,et al.Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process[J].Stem Cell Res Ther,2019,10(1):302.DOI: 10.1186/s13287-019-1415-6.
    [31]
    彭雨,孟浩,李品学,等.基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展[J].中华烧伤与创面修复杂志,2023,39(3):290-295.DOI: 10.3760/cma.j.cn501225-20220407-00126.
    [32]
    MoffaM,SciancaleporeAG,PassioneLG,et al.Combined nano- and micro-scale topographic cues for engineered vascular constructs by electrospinning and imprinted micro-patterns[J].Small,2014,10(12):2439-2450.DOI: 10.1002/smll.201303179.
    [33]
    NohM,ChoiYH,AnYH,et al.Magnetic nanoparticle-embedded hydrogel sheet with a groove pattern for wound healing application[J].ACS Biomater Sci Eng,2019,5(8):3909-3921.DOI: 10.1021/acsbiomaterials.8b01307.
    [34]
    LuG,DingZ,WeiY,et al.Anisotropic biomimetic silk scaffolds for improved cell migration and healing of skin wounds[J].ACS Appl Mater Interfaces,2018,10(51):44314-44323.DOI: 10.1021/acsami.8b18626.
    [35]
    CummingBD,McElwainDL,UptonZ.A mathematical model of wound healing and subsequent scarring[J].J R Soc Interface,2010,7(42):19-34.DOI: 10.1098/rsif.2008.0536.
    [36]
    LiY,XiaoZ,ZhouY,et al.Controlling the multiscale network structure of fibers to stimulate wound matrix rebuilding by fibroblast differentiation[J].ACS Appl Mater Interfaces,2019,11(31):28377-28386.DOI: 10.1021/acsami.9b06439.
    [37]
    QiY,ZhangW,LiG,et al.An oriented-collagen scaffold including Wnt5a promotes osteochondral regeneration and cartilage interface integration in a rabbit model[J].FASEB J,2020,34(8):11115-11132.DOI: 10.1096/fj.202000280R.
    [38]
    ChenH,LuiYS,TanZW,et al.Migration and phenotype control of human dermal fibroblasts by electrospun fibrous substrates[J].Adv Healthc Mater,2019,8(9):e1801378.DOI: 10.1002/adhm.201801378.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (167) PDF downloads(31) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return