Volume 40 Issue 1
Jan.  2024
Turn off MathJax
Article Contents
Yan ZZ,Wang YX,Zhang TL,et al.Properties of gelatin-polyethylene glycol hydrogel loaded with silver nanoparticle Chlorella and its effects on healing of infected full-thickness skin defect wounds in mice[J].Chin J Burns Wounds,2024,40(1):33-42.DOI: 10.3760/cma.j.cn501225-20231020-00126.
Citation: Yan ZZ,Wang YX,Zhang TL,et al.Properties of gelatin-polyethylene glycol hydrogel loaded with silver nanoparticle Chlorella and its effects on healing of infected full-thickness skin defect wounds in mice[J].Chin J Burns Wounds,2024,40(1):33-42.DOI: 10.3760/cma.j.cn501225-20231020-00126.

Properties of gelatin-polyethylene glycol hydrogel loaded with silver nanoparticle Chlorella and its effects on healing of infected full-thickness skin defect wounds in mice

doi: 10.3760/cma.j.cn501225-20231020-00126
Funds:

General Program of National Natural Science Foundation of China 82172201

National Key Research and Development Program of China 2018YFE0194300

More Information
  •   Objective   To explore the properties of gelatin-polyethylene glycol hydrogel loaded with silver nanoparticle (AgNP) Chlorella (hereinafter referred to as the composite hydrogel) and its effects on healing of infected full-thickness skin defect wounds in mice.   Methods   The research was an experimental research. The simple gelatin-polyethylene glycol hydrogel (hereinafter referred to as the simple hydrogel) and the composite hydrogel were prepared, and the appearance and injectability of the two hydrogels were observed at 55 and 37 ℃, and under the irradiation of 808 nm near-infrared light, respectively. An electronic universal testing machine was employed to assess the tensile and compressive stress-strain properties of both types of hydrogels at room temperature. Additionally, the cyclic compressive stress-strain properties of the composite hydrogel were examined at 80% of the maximum compressive stress. Staphylococcus aureus or Escherichia coli solution was added to phosphate buffer solution (PBS), simple hydrogel, and composite hydrogel, respectively. The part of composite hydrogel containing Staphylococcus aureus or Escherichia coli solution was irradiated with near-infrared light for 5 minutes. After each sample was incubated for 6 h, the dilution plating method was used to detect and calculate the mortality rates of the two bacteria at 24 h of culture ( n=5). The discarded foreskin tissue was taken from a 6-year-old healthy boy admitted to the Department of Urology of the First Affiliated Hospital of Naval Medical University for circumcision. Primary human fibroblasts (HFbs) were isolated using the enzyme extraction method, routinely cultured to the 3 rd to 6 th passages for subsequent cellular experiments. Composite hydrogel extracts with final mass concentrations of 100.0, 50.0, 25.0, 12.5, and 0 mg/mL were respectively prepared and used to culture HFbs, and the cell proliferation after 24 h of culture was detected using a cell counting kit 8 ( n=3). A total of twenty 6-8 weeks old C57BL/6J female mice were utilized, and a full-thickness skin defect was surgically created on the back of each mouse. The wounds were infected with Staphylococcus aureus solution. The infected mice were divided into blank control group, simple hydrogel group, composite hydrogel group, and combined treatment group according to the random number table, and the wounds were treated with PBS, simple hydrogel, composite hydrogel, and composite hydrogel+light irradiation (under the irradiation of 808 nm near-infrared light for 5 min), respectively, with 5 mice in each group. On post injury day (PID) 0 (immediately after the first wound treatment), 3, 7, and 14, an overall assessment of wound exudation and healing were conducted, and the wound healing rates on PID 7 and 14 were calculated ( n=5). On PID 14, hematoxylin-eosin staining was performed to observe histopathological changes in the mouse wound.   Results   Both simple hydrogel and composite hydrogel were in a solution state at 55 ℃ and transition to a gel state when cooling to 37 ℃. After the two hydrogels were irradiated by near-infrared light, only the composite hydrogel reheated up and returned to the solution state again with injectability. The maximum tensile stress of the composite hydrogel was up to 301.42 kPa, with a corresponding strain of 87.19%; the maximum compressive stress was up to 413.79 kPa, with a corresponding strain of 91.67%, which was similar to the tensile and compressive properties of the simple hydrogel. After 10 compression cycles, the maximum compressive stress of the composite hydrogel still reached 84.1% of the first compressive stress. After 24 h of culture, the mortality rate of Staphylococcus aureus treated with simple hydrogel was significantly higher than that treated with PBS ( P<0.05); the mortality rates of Escherichia coli and Staphylococcus aureus treated with composite hydrogel alone were significantly higher than those treated with simple hydrogel ( P<0.05); the mortality rates of Escherichia coli and Staphylococcus aureus treated with composite hydrogel+light irradiation were significantly higher than those treated with composite hydrogel alone ( P<0.05). After 24 h of culture, compared with that cultured in composite hydrogel immersion solution with final mass concentration of 0 mg/mL, the proliferation activity of HFbs cultured in composite hydrogel immersion solution with final mass concentrations of 25.0 and 50.0 mg/mL was significantly enhanced ( P<0.05), while the proliferation activity of HFbs cultured in composite hydrogel immersion solution with final mass concentration of 100 mg/mL was significantly decreased ( P<0.05). On PID 0 and 3, more purulent secretions were seen in the wounds of mice in blank control group and simple hydrogel group, while only a small amount of exudate was observed in the wounds of mice in composite hydrogel group, and no obvious infection was observed in the wounds of mice in combined treatment group. On PID 7 and 14, the wound healing rates of mice in simple hydrogel group were significantly higher than those in blank control group ( P<0.05); the wound healing rates of mice in composite hydrogel group were significantly higher than those in simple hydrogel group ( P<0.05); the wound healing rates in combined treatment group were significantly higher than those in composite hydrogel group ( P<0.05). On PID 14, the wounds of mice in blank control group exhibited a high infiltration of inflammatory cells with no new epithelial layer observed; the wounds of mice in simple hydrogel group displayed a short length of newly formed epithelium with a small amount of inflammatory cells; the wounds of mice in composite hydrogel group exhibited continuous formation of new epithelium and a large amount of immature granulation tissue; the wounds of mice in combined treatment group showed continuous epithelialization with less immature granulation tissue.   Conclusions   The prepared composite hydrogel exhibits excellent thermosensitivity, photothermal properties, and injectability, as well as excellent mechanical properties, antibacterial properties, and biocompatibility, and can promote the healing of infected full-thickness skin defect wounds in mice.

     

  • loading
  • [1]
    MartinP. Wound healing--aiming for perfect skin regeneration[J]. Science, 1997,276(5309):75-81. DOI: 10.1126/science.276.5309.75.
    [2]
    HanZ, DengL, ChenS, et al. Zn 2+-Loaded adhesive bacterial cellulose hydrogel with angiogenic and antibacterial abilities for accelerating wound healing[J/OL]. Burns Trauma, 2023,11:tkac048[2023-10-20]. https://pubmed.ncbi.nlm.nih.gov/36751362/. DOI: 10.1093/burnst/tkac048.
    [3]
    周紫萱, 姜耀男, 肖仕初. 原位成形可注射水凝胶特性及其促创面愈合作用研究进展[J].中华烧伤杂志,2021,37(1):82-85. DOI: 10.3760/cma.j.cn501120-20200428-00243.
    [4]
    金荣华, 张珍珍, 徐鹏钦, 等. 三维生物打印抗菌型水凝胶对大鼠全层皮肤缺损创面的作用[J]. 中华烧伤与创面修复杂志, 2023, 39(2): 165-174. DOI: 10.3760/cma.j.cn501120-20210809-00274.
    [5]
    GaoG, JiangYW, JiaHR, et al. Near-infrared light-controllable on-demand antibiotics release using thermo-sensitive hydrogel-based drug reservoir for combating bacterial infection[J]. Biomaterials, 2019,188:83-95. DOI: 10.1016/j.biomaterials.2018.09.045.
    [6]
    MiaoY, WangS, ZhangB, et al. Carbon dot-based nanomaterials: a promising future nano-platform for targeting tumor-associated macrophages[J]. Front Immunol, 2023,14:1133238. DOI: 10.3389/fimmu.2023.1133238.
    [7]
    LiuY , LiF , GuoZ ,et al.Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections[J]. CHEM ENG J, 2019, 382:122990.DOI: 10.1016/j.cej.2019.122990.
    [8]
    LokCN, HoCM, ChenR, et al. Silver nanoparticles: partial oxidation and antibacterial activities[J]. J Biol Inorg Chem, 2007,12(4):527-534. DOI: 10.1007/s00775-007-0208-z.
    [9]
    StebounovaLV , GuioE, GrassianVH. Silver nanoparticles in simulated biological media: a study of aggregation, sedimentation, and dissolution[J]. J NANOPART RES, 2011, 13(1):233-244.DOI: 10.1007/s11051-010-0022-3.
    [10]
    ThangaswamyS, MirMA, MuthuA. Green synthesis of mono and bimetallic alloy nanoparticles of gold and silver using aqueous extract of Chlorella acidophile for potential applications in sensors[J]. Prep Biochem Biotechnol, 2021,51(10):1026-1035. DOI: 10.1080/10826068.2021.1894441.
    [11]
    YeH, ChengJ, YuK. In situ reduction of silver nanoparticles by gelatin to obtain porous silver nanoparticle/chitosan composites with enhanced antimicrobial and wound-healing activity[J]. Int J Biol Macromol, 2019,121:633-642. DOI: 10.1016/j.ijbiomac.2018.10.056.
    [12]
    LiuY, MaoJ, GuoZ, et al. Polyvinyl alcohol/carboxymethyl chitosan hydrogel loaded with silver nanoparticles exhibited antibacterial and self-healing properties[J]. Int J Biol Macromol, 2022,220:211-222. DOI: 10.1016/j.ijbiomac.2022.08.061.
    [13]
    EdwardsR, HardingKG. Bacteria and wound healing[J]. Curr Opin Infect Dis, 2004, 17(2): 91-96. DOI: 10.1097/00001432-200404000-00004.
    [14]
    JangH, LimSH, ChoiJS, et al. Antibacterial properties of cetyltrimethylammonium bromide-stabilized green silver nanoparticles against methicillin-resistant Staphylococcus aureus[J]. Arch Pharm Res, 2015,38(10):1906-1912. DOI: 10.1007/s12272-015-0605-8.
    [15]
    MammariN, DuvalRE. Photothermal/photoacoustic therapy combined with metal-based nanomaterials for the treatment of microbial infections[J]. Microorganisms, 2023,11 (8):2084.DOI: 10.3390/microorganisms11082084.
    [16]
    YinIX, ZhangJ, ZhaoIS, et al. The antibacterial mechanism of silver nanoparticles and its application in dentistry[J]. Int J Nanomedicine, 2020,15:2555-2562. DOI: 10.2147/IJN.S246764.
    [17]
    ZhangXF, LiuZG, ShenW, et al. Silver nanoparticles: synthesis, characterization, properties, applications, and therapeutic approaches[J]. Int J Mol Sci, 2016,17(9):1534. DOI: 10.3390/ijms17091534.
    [18]
    ZhangX, TanB, WuY, et al. A review on hydrogels with photothermal effect in wound healing and bone tissue engineering[J]. Polymers (Basel), 2021, 13(13):2100. DOI: 10.3390/polym13132100.
    [19]
    ChenY, GaoY, ChenY, et al. Nanomaterials-based photothermal therapy and its potentials in antibacterial treatment[J]. J Control Release, 2020,328:251-262. DOI: 10.1016/j.jconrel.2020.08.055.
    [20]
    JiaX, AhmadI, YangR, et al. Versatile graphene-based photothermal nanocomposites for effectively capturing and killing bacteria, and for destroying bacterial biofilms[J]. J Mater Chem B, 2017,5(13):2459-2467. DOI: 10.1039/c6tb03084j.
    [21]
    ChangCW, YehYC. Poly(glycerol sebacate)-co-poly(ethylene glycol)/gelatin hybrid hydrogels as biocompatible biomaterials for cell proliferation and spreading[J]. Macromol Biosci, 2021,21(12):e2100248. DOI: 10.1002/mabi.202100248.
    [22]
    ZhangR, ChenJ, MaoX, et al. Anti-inflammatory and anti-aging evaluation of pigment-protein complex extracted from Chlorella pyrenoidosa[J]. Mar Drugs, 2019,17(10):586. DOI: 10.3390/md17100586.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(8)  / Tables(2)

    Article Metrics

    Article views (1756) PDF downloads(44) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return