Citation: | Zhao JH,Lyu YH,Lei YH.Visualized analysis of research hotspots and evolutionary trends in the field of wound repair mechanism research[J].Chin J Burns Wounds,2024,40(5):433-442.DOI: 10.3760/cma.j.cn501225-20240118-00022. |
[1] |
BarrientosS, BremH, StojadinovicO, et al. Clinical application of growth factors and cytokines in wound healing[J]. Wound Repair Regen, 2014,22(5):569-578. DOI: 10.1111/wrr.12205.
|
[2] |
NieC, YangD, XuJ, et al. Locally administered adipose-derived stem cells accelerate wound healing through differentiation and vasculogenesis[J]. Cell Transplant, 2011,20(2):205-216. DOI: 10.3727/096368910X520065.
|
[3] |
WangM, XuX, LeiX, et al. Mesenchymal stem cell-based therapy for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab002[2024-01-18]. https://pubmed.ncbi.nlm.nih.gov/34212055/. DOI: 10.1093/burnst/tkab002.
|
[4] |
YangX, MoW, ShiY, et al. Fumaria officinalis-loaded chitosan nanoparticles dispersed in an alginate hydrogel promote diabetic wounds healing by upregulating VEGF, TGF-β, and b-FGF genes: a preclinical investigation[J]. Heliyon, 2023,9(7):e17704. DOI: 10.1016/j.heliyon.2023.e17704.
|
[5] |
陈瀚熙, 黄颖雯, 刘汶佶, 等. 国内外电烧伤研究现状与热点的可视化分析[J].中华烧伤与创面修复杂志,2023,39(10):977-984. DOI: 10.3760/cma.j.cn501225-20230511-00167.
|
[6] |
KulkarniAB, HuhCG, BeckerD, et al. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death[J]. Proc Natl Acad Sci U S A, 1993, 90(2):770-774. DOI: 10.1073/pnas.90.2.770.
|
[7] |
LiY, FanJ, ChenM, et al. Transforming growth factor-alpha: a major human serum factor that promotes human keratinocyte migration[J]. J Invest Dermatol, 2006,126(9):2096-2105. DOI: 10.1038/sj.jid.5700350.
|
[8] |
ClarkDA, CokerR. Transforming growth factor-beta (TGF-beta)[J]. Int J Biochem Cell Biol, 1998,30(3):293-298. DOI: 10.1016/s1357-2725(97)00128-3.
|
[9] |
AranyPR, FlandersKC, KobayashiT, et al. Smad3 deficiency alters key structural elements of the extracellular matrix and mechanotransduction of wound closure[J]. Proc Natl Acad Sci U S A, 2006,103(24):9250-9255. DOI: 10.1073/pnas.0602473103.
|
[10] |
SunJ, ZhaoH, ShenC, et al. Tideglusib promotes wound healing in aged skin by activating PI3K/Akt pathway[J]. Stem Cell Res Ther, 2022,13(1):269. DOI: 10.1186/s13287-022-02949-2.
|
[11] |
CaronC, DeGeerJ, FournierP, et al. CdGAP/ARHGAP31, a Cdc42/Rac1 GTPase regulator, is critical for vascular development and VEGF-mediated angiogenesis[J]. Sci Rep, 2016,6:27485. DOI: 10.1038/srep27485.
|
[12] |
NishidaT, KondoS, MaedaA, et al. CCN family 2/connective tissue growth factor (CCN2/CTGF) regulates the expression of Vegf through Hif-1alpha expression in a chondrocytic cell line, HCS-2/8, under hypoxic condition[J]. Bone, 2009,44(1):24-31. DOI: 10.1016/j.bone.2008.08.125.
|
[13] |
WijesooriyaLI, WaidyathilakeD. Antimicrobial properties of nonantibiotic agents for effective treatment of localized wound infections: a minireview[J]. Int J Low Extrem Wounds, 2022,21(3):207-218. DOI: 10.1177/1534734620939748.
|
[14] |
BangS, JungUW, NohI. Synthesis and biocompatibility characterizations of in situ chondroitin sulfate-gelatin hydrogel for tissue engineering[J]. Tissue Eng Regen Med, 2018,15(1):25-35. DOI: 10.1007/s13770-017-0089-3.
|
[15] |
MehataAK, SetiaA, Vikas, et al. Vitamin E TPGS-based nanomedicine, nanotheranostics, and targeted drug delivery: past, present, and future[J]. Pharmaceutics, 2023,15(3):722. DOI: 10.3390/pharmaceutics15030722.
|
[16] |
LiuH, WangC, LiC, et al. A functional chitosan-based hydrogel as a wound dressing and drug delivery system in the treatment of wound healing[J]. RSC Adv, 2018,8(14):7533-7549. DOI: 10.1039/c7ra13510f.
|
[17] |
WengT, WangJ, YangM, et al. Nanomaterials for the delivery of bioactive factors to enhance angiogenesis of dermal substitutes during wound healing[J/OL]. Burns Trauma, 2022,10:tkab049[2024-01-18].https://pubmed.ncbi.nlm.nih.gov/36960274/. DOI: 10.1093/burnst/tkab049.
|
[18] |
KolanthaiE, FuY, KumarU, et al. Nanoparticle mediated RNA delivery for wound healing[J]. Wiley Interdiscip Rev Nanomed Nanobiotechnol, 2022,14(2):e1741. DOI: 10.1002/wnan.1741.
|
[19] |
LeeV, RompolasP. Corneal regeneration: insights in epithelial stem cell heterogeneity and dynamics[J]. Curr Opin Genet Dev, 2022,77:101981. DOI: 10.1016/j.gde.2022.101981.
|
[20] |
ChoiYS, ZhangY, XuM, et al. Distinct functions for Wnt/β-catenin in hair follicle stem cell proliferation and survival and interfollicular epidermal homeostasis[J]. Cell Stem Cell, 2013,13(6):720-733. DOI: 10.1016/j.stem.2013.10.003.
|
[21] |
ChengP, SunX, YinD, et al. Nanog down-regulates the Wnt signaling pathway via β-catenin phosphorylation during epidermal stem cell proliferation and differentiation[J]. Cell Biosci, 2015,5:5. DOI: 10.1186/2045-3701-5-5.
|
[22] |
StamosJL, WeisWI. The β-catenin destruction complex[J]. Cold Spring Harb Perspect Biol, 2013,5(1):a007898. DOI: 10.1101/cshperspect.a007898.
|
[23] |
BisevacJ, KattaK, PetrovskiG, et al. Wnt/β-catenin signaling activation induces differentiation in human limbal epithelial stem cells cultured ex vivo[J]. Biomedicines, 2023,11(7):1829. DOI: 10.3390/biomedicines11071829.
|
[24] |
JorgeL, GómezAlvarez, PazziniJM, et al. Effects of canine adipose-derived mesenchymal stem cells on the epithelialization of rabbits' skin autograft (Oryctolagus cuniculus)[J].Pesquisa Veterinária Brasileira, 2020, 40(12):1018-1028.DOI: 10.1590/1678-5150-pvb-6543.
|
[25] |
PitulescuME, SchmidtI, GiaimoBD, et al. Dll4 and Notch signalling couples sprouting angiogenesis and artery formation[J]. Nat Cell Biol, 2017,19(8):915-927. DOI: 10.1038/ncb3555.
|
[26] |
KhanS, VillalobosMA, ChoronRL, et al. Fibroblast growth factor and vascular endothelial growth factor play a critical role in endotheliogenesis from human adipose-derived stem cells[J]. J Vasc Surg, 2017,65(5):1483-1492. DOI: 10.1016/j.jvs.2016.04.034.
|
[27] |
YuF, WitmanN, YanD, et al. Human adipose-derived stem cells enriched with VEGF-modified mRNA promote angiogenesis and long-term graft survival in a fat graft transplantation model[J]. Stem Cell Res Ther, 2020,11(1):490. DOI: 10.1186/s13287-020-02008-8.
|
[28] |
HuayllaniMT, Sarabia-EstradaR, RestrepoDJ, et al. Adipose-derived stem cells in wound healing of full-thickness skin defects: a review of the literature[J]. J Plast Surg Hand Surg, 2020,54(5):263-279. DOI: 10.1080/2000656X.2020.1767116.
|
[29] |
ZhangW, BaiX, ZhaoB, et al. Cell-free therapy based on adipose tissue stem cell-derived exosomes promotes wound healing via the PI3K/Akt signaling pathway[J]. Exp Cell Res, 2018,370(2):333-342. DOI: 10.1016/j.yexcr.2018.06.035.
|
[30] |
XiaJ, MinaminoS, KuwabaraK, et al. Stem cell secretome as a new booster for regenerative medicine[J]. Biosci Trends, 2019,13(4):299-307. DOI: 10.5582/bst.2019.01226.
|
[31] |
ShangB, XuT, HuN, et al. Circ-Klhl8 overexpression increased the therapeutic effect of EPCs in diabetic wound healing via the miR-212-3p/SIRT5 axis[J]. J Diabetes Complications, 2021,35(11):108020. DOI: 10.1016/j.jdiacomp.2021.108020.
|
[32] |
WangZ, FengC, LiuH, et al. Hypoxic pretreatment of adipose-derived stem cells accelerates diabetic wound healing via circ-Gcap14 and HIF-1α/VEGF mediated angiopoiesis[J]. Int J Stem Cells, 2021,14(4):447-454. DOI: 10.15283/ijsc21050.
|
[33] |
LiY, ChengT, WanC, et al. circRNA_0084043 contributes to the progression of diabetic retinopathy via sponging miR-140-3p and inducing TGFA gene expression in retinal pigment epithelial cells[J]. Gene, 2020,747:144653. DOI: 10.1016/j.gene.2020.144653.
|
[34] |
WangA, TomaMA, MaJ, et al. Circular RNA hsa_circ_0084443 is upregulated in diabetic foot ulcer and modulates keratinocyte migration and proliferation[J]. Adv Wound Care (New Rochelle), 2020,9(4):145-160. DOI: 10.1089/wound.2019.0956.
|