| Citation: | Chen Yan, Cheng Zhuo, Ma Le, et al. Analysis of the number, type, and functional heterogeneity of senescent cells in the radiation-induced skin wounds in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(6): 577-586. Doi: 10.3760/cma.j.cn501225-20240604-00209 |
| [1] |
Iddins CJ, DiCarlo AL, Ervin MD, et al. Cutaneous and local radiation injuries[J]. J Radiol Prot, 2022, 42(1): 011001. DOI: 10.1088/1361-6498/ac241a.
|
| [2] |
Yang X, Ren H, Guo X, et al. Radiation-induced skin injury: pathogenesis, treatment, and management[J]. Aging (Albany NY), 2020, 12(22): 23379-23393. DOI: 10.18632/aging.103932.
|
| [3] |
Davan-Wetton CSA, Pessolano E, Perretti M, et al. Senescence under appraisal: hopes and challenges revisited[J]. Cell Mol Life Sci, 2021, 78(7): 3333-3354. DOI: 10.1007/s00018-020-03746-x.
|
| [4] |
Adjemian S, Oltean T, Martens S, et al. Ionizing radiation results in a mixture of cellular outcomes including mitotic catastrophe, senescence, methuosis, and iron-dependent cell death[J]. Cell Death Dis, 2020, 11(11): 1003. DOI: 10.1038/s41419-020-03209-y.
|
| [5] |
Demaria M, Ohtani N, Youssef SA, et al. An essential role for senescent cells in optimal wound healing through secretion of PDGF-AA[J]. Dev Cell, 2014, 31(6): 722-733. DOI: 10.1016/j.devcel.2014.11.012.
|
| [6] |
Wei X, Li M, Zheng Z, et al. Senescence in chronic wounds and potential targeted therapies[J/OL]. Burns Trauma, 2022, 10: tkab045[2024-06-04].
|
| [7] |
Admasu TD, Kim K, Rae M, et al. Selective ablation of primary and paracrine senescent cells by targeting iron dyshomeostasis[J]. Cell Rep, 2023, 42(2): 112058. DOI: 10.1016/j.celrep.2023.112058.
|
| [8] |
Huang W, Hickson LJ, Eirin A, et al. Cellular senescence: the good, the bad and the unknown[J]. Nat Rev Nephrol, 2022, 18(10): 611-627. DOI: 10.1038/s41581-022-00601-z.
|
| [9] |
Chen Y, Ma L, Cheng Z, et al. Senescent fibroblast facilitates re-epithelization and collagen deposition in radiation-induced skin injury through IL-33-mediated macrophage polarization[J]. J Transl Med, 2024, 22(1): 176. DOI: 10.1186/s12967-024-04972-8.
|
| [10] |
Iwakawa M, Noda S, Ohta T, et al. Different radiation susceptibility among five strains of mice detected by a skin reaction[J]. J Radiat Res, 2003, 44(1): 7-13. DOI: 10.1269/jrr.44.7.
|
| [11] |
Rodgers KE, Tan A, Kim L, et al. Development of a guinea pig cutaneous radiation injury model using low penetrating X-rays[J]. Int J Radiat Biol, 2016, 92(8): 434-443. DOI: 10.1080/09553002.2016.1186302.
|
| [12] |
Tu W, Tang S, Yan T, et al. Integrative multi-omic analysis of radiation-induced skin injury reveals the alteration of fatty acid metabolism in early response of ionizing radiation[J]. J Dermatol Sci, 2022, 108(3): 178-186. DOI: 10.1016/j.jdermsci.2023.01.001.
|
| [13] |
Stuart T, Butler A, Hoffman P, et al. Comprehensive integration of single-cell data[J]. Cell, 2019, 177(7): 1888-1902.e21. DOI: 10.1016/j.cell.2019.05.031.
|
| [14] |
Wu T, Hu E, Xu S, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data[J]. Innovation (Camb), 2021, 2(3): 100141. DOI: 10.1016/j.xinn.2021.100141.
|
| [15] |
中国老年医学学会烧创伤分会, 中华医学会组织修复与再生分会, 中国康复医学会再生医学与康复专业委员会, 等. 放射性皮肤损伤的诊断和治疗专家共识(2024版)[J]. 中华烧伤与创面修复杂志, 2024, 40(8): 701-712. DOI: 10.3760/cma.j.cn501225-20240126-00033.
|
| [16] |
Dai S, Wen Y, Luo P, et al. Therapeutic implications of exosomes in the treatment of radiation injury[J/OL]. Burns Trauma, 2022, 10: tkab043[2024-06-04].
|
| [17] |
Huayllani MT, Ruiz-Garcia H, Boczar D, et al. Adipose-derived stem cells therapy for radiation-induced skin injury[J]. Ann Plast Surg, 2021, 87(6): 639-649. DOI: 10.1097/SAP.0000000000003039.
|
| [18] |
夏成德, 杨阳. 放射性皮肤溃疡的治疗和预防策略[J]. 中华烧伤与创面修复杂志, 2024, 40(8): 719-724. DOI: 10.3760/cma.j.cn501225-20240415-00134.
|
| [19] |
DiCarlo AL, Bandremer AC, Hollingsworth BA, et al. Cutaneous radiation injuries: models, assessment and treatments[J]. Radiat Res, 2020, 194(3): 315-344. DOI: 10.1667/RADE-20-00120.1.
|
| [20] |
Chen W, Wang Y, Zheng J, et al. Characterization of cellular senescence in radiation ulcers and therapeutic effects of mesenchymal stem cell-derived conditioned medium[J/OL]. Burns Trauma, 2023, 11: tkad001[2024-06-04].
|
| [21] |
Wang H, Wang Z, Huang Y, et al. Senolytics (DQ) mitigates radiation ulcers by removing senescent cells[J]. Front Oncol, 2020, 9: 1576. DOI: 10.3389/fonc.2019.01576.
|
| [22] |
Haston S, Gonzalez-Gualda E, Morsli S, et al. Clearance of senescent macrophages ameliorates tumorigenesis in KRAS-driven lung cancer[J]. Cancer Cell, 2023, 41(7): 1242-1260.e6. DOI: 10.1016/j.ccell.2023.05.004.
|
| [23] |
Moiseeva V, Cisneros A, Cobos AC, et al. Context-dependent roles of cellular senescence in normal, aged, and disease states[J]. FEBS J, 2023, 290(5): 1161-1185. DOI: 10.1111/febs.16573.
|
| [24] |
Wang W, Luo J, Sheng W, et al. Proteomic profiling of radiation-induced skin fibrosis in rats: targeting the ubiquitin-proteasome system[J]. Int J Radiat Oncol Biol Phys, 2016, 95(2): 751-760. DOI: 10.1016/j.ijrobp.2016.01.021.
|
| [25] |
Campbell RA, Docherty MH, Ferenbach DA, et al. The role of ageing and parenchymal senescence on macrophage function and fibrosis[J]. Front Immunol, 2021, 12: 700790. DOI: 10.3389/fimmu.2021.700790.
|
| [26] |
Nguyen HQ, To NH, Zadigue P, et al. Ionizing radiation-induced cellular senescence promotes tissue fibrosis after radiotherapy. A review[J]. Crit Rev Oncol Hematol, 2018, 129: 13-26. DOI: 10.1016/j.critrevonc.2018.06.012.
|
| [27] |
Paramos-de-Carvalho D, Jacinto A, Saúde L. The right time for senescence[J]. Elife, 2021, 10: e72449. DOI: 10.7554/eLife.72449.
|
| [28] |
Kirschner K, Rattanavirotkul N, Quince MF, et al. Functional heterogeneity in senescence[J]. Biochem Soc Trans, 2020, 48(3): 765-773. DOI: 10.1042/BST20190109.
|
| [29] |
Wilkinson HN, Hardman MJ. Cellular senescence in acute and chronic wound repair[J]. Cold Spring Harb Perspect Biol, 2022, 14(11): a041221. DOI: 10.1101/cshperspect.a041221.
|
| [30] |
Alessio N, Acar MB, Squillaro T, et al. Progression of irradiated mesenchymal stromal cells from early to late senescence: changes in SASP composition and anti-tumour properties[J]. Cell Prolif, 2023, 56(6): e13401. DOI: 10.1111/cpr.13401.
|
| [31] |
Cohn RL, Gasek NS, Kuchel GA, et al. The heterogeneity of cellular senescence: insights at the single-cell level[J]. Trends Cell Biol, 2023, 33(1): 9-17. DOI: 10.1016/j.tcb.2022.04.011.
|
| [32] |
Wu F, Zhang Z, Wang M, et al. Cellular atlas of senescent lineages in radiation-or immunotherapy-induced lung injury by single-cell RNA-sequencing analysis[J]. Int J Radiat Oncol Biol Phys, 2023, 116(5): 1175-1189. DOI: 10.1016/j.ijrobp.2023.02.005.
|
| [33] |
Yan T, Yang P, Bai H, et al. Single-cell RNA-Seq analysis of molecular changes during radiation-induced skin injury: the involvement of Nur77[J]. Theranostics, 2024, 14(15): 5809-5825. DOI: 10.7150/thno.100417.
|
| [34] |
Guerrero-Juarez CF, Dedhia PH, Jin S, et al. Single-cell analysis reveals fibroblast heterogeneity and myeloid-derived adipocyte progenitors in murine skin wounds[J]. Nat Commun, 2019, 10(1): 650. DOI: 10.1038/s41467-018-08247-x.
|
| [35] |
Paldor M, Levkovitch-Siany O, Eidelshtein D, et al. Single-cell transcriptomics reveals a senescence-associated IL-6/CCR6 axis driving radiodermatitis[J]. EMBO Mol Med, 2022, 14(8): e15653. DOI: 10.15252/emmm.202115653.
|
| [36] |
Lucas V, Cavadas C, Aveleira CA. Cellular senescence: from mechanisms to current biomarkers and senotherapies[J]. Pharmacol Rev, 2023, 75(4): 675-713. DOI: 10.1124/pharmrev.122.000622.
|
| [37] |
Muñoz-Espín D, Cañamero M, Maraver A, et al. Programmed cell senescence during mammalian embryonic development[J]. Cell, 2013, 155(5): 1104-1118. DOI: 10.1016/j.cell.2013.10.019.
|
| [38] |
Zhang J, Yu H, Man MQ, et al. Aging in the dermis: fibroblast senescence and its significance[J]. Aging Cell, 2024, 23(2): e14054. DOI: 10.1111/acel.14054.
|
| [39] |
Sharpless NE, Sherr CJ. Forging a signature of in vivo senescence[J]. Nat Rev Cancer, 2015, 15(7): 397-408. DOI: 10.1038/nrc3960.
|
| [40] |
Gorgoulis V, Adams PD, Alimonti A, et al. Cellular senescence: defining a path forward[J]. Cell, 2019, 179(4): 813-827. DOI: 10.1016/j.cell.2019.10.005.
|