| Citation: | He Zhanchen, Shang Yuxuan, Xu Xiangping, et al. Multi-omics Mendelian randomization study on the causality between non-ionizing radiation and facial aging[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(6): 594-603. Doi: 10.3760/cma.j.cn501225-20240830-00320 |
| [1] |
Swift A, Liew S, Weinkle S, et al. The facial aging process from the "inside out"[J]. Aesthet Surg J, 2021, 41(10): 1107-1119. DOI: 10.1093/asj/sjaa339.
|
| [2] |
Franco AC, Aveleira C, Cavadas C. Skin senescence: mechanisms and impact on whole-body aging[J]. Trends Mol Med, 2022, 28(2): 97-109. DOI: 10.1016/j.molmed.2021.12.003.
|
| [3] |
Tuieng RJ, Cartmell SH, Kirwan CC, et al. The effects of ionising and non-ionising electromagnetic radiation on extracellular matrix proteins[J]. Cells, 2021, 10(11): 3041. DOI: 10.3390/cells10113041.
|
| [4] |
Pittayapruek P, Meephansan J, Prapapan O, et al. Role of matrix metalloproteinases in photoaging and photocarcinogenesis[J]. Int J Mol Sci, 2016, 17(6): 868. DOI: 10.3390/ijms17060868.
|
| [5] |
Bang E, Kim DH, Chung HY. Protease-activated receptor 2 induces ROS-mediated inflammation through Akt-mediated NF-κB and FoxO6 modulation during skin photoaging[J]. Redox Biol, 2021, 44: 102022. DOI: 10.1016/j.redox.2021.102022.
|
| [6] |
Birney E. Mendelian randomization[J]. Cold Spring Harb Perspect Med, 2022, 12(4): a041302. DOI: 10.1101/cshperspect.a041302.
|
| [7] |
易美慧, 郭晔. 儿童核心结合因子相关急性髓细胞白血病的细胞分子遗传学异常与预后[J]. 国际输血及血液学杂志, 2019, 42(2): 52-57. DOI: 10.3760/cma.j.issn.1673-419X.2019.02.013.
|
| [8] |
于秋霜, 李凌勋, 陶怡娜, 等. 免疫细胞与脓毒症的因果关联: 一项基于孟德尔随机化方法的研究[J]. 中华危重病急救医学, 2024, 36(8): 821-828. DOI: 10.3760/cma.j.cn121430-20240527-00462.
|
| [9] |
Bourassa KJ, Moffitt TE, Ambler A, et al. Association of treatable health conditions during adolescence with accelerated aging at midlife[J]. JAMA Pediatr, 2022, 176(4): 392-399. DOI: 10.1001/jamapediatrics.2021.6417.
|
| [10] |
Kadunce DP, Burr R, Gress R, et al. Cigarette smoking: risk factor for premature facial wrinkling[J]. Ann Intern Med, 1991, 114(10): 840-844. DOI: 10.7326/0003-4819-114-10-840.
|
| [11] |
Rungratanawanich W, Qu Y, Wang X, et al. Advanced glycation end products (AGEs) and other adducts in aging-related diseases and alcohol-mediated tissue injury [J]. Exp Mol Med, 2021, 53(2): 168-188. DOI: 10.1038/s12276-021-00561-7.
|
| [12] |
Bencivenga L, De Souto Barreto P, Rolland Y, et al. Blood pressure variability: a potential marker of aging[J]. Ageing Res Rev, 2022, 80: 101677. DOI: 10.1016/j.arr.2022.101677.
|
| [13] |
Lacolley P, Regnault V, Segers P, et al. Vascular smooth muscle cells and arterial stiffening: relevance in development, aging, and disease[J]. Physiol Rev, 2017, 97(4): 1555-1617. DOI: 10.1152/physrev.00003.2017.
|
| [14] |
Sanderson E. Multivariable Mendelian randomization and mediation[J]. Cold Spring Harb Perspect Med, 2021, 11(2): a038984. DOI: 10.1101/cshperspect.a038984.
|
| [15] |
Zhou W, Liu G, Hung RJ, et al. Causal relationships between body mass index, smoking and lung cancer: univariable and multivariable Mendelian randomization[J]. Int J Cancer, 2021, 148(5): 1077-1086. DOI: 10.1002/ijc.33292.
|
| [16] |
Xu S, Li X, Zhang S, et al. Oxidative stress gene expression, DNA methylation, and gut microbiota interaction trigger Crohn's disease: a multi-omics Mendelian randomization study[J]. BMC Med, 2023, 21(1): 179. DOI: 10.1186/s12916-023-02878-8.
|
| [17] |
Yang H, Liu D, Zhao C, et al. Mendelian randomization integrating GWAS and eQTL data revealed genes pleiotropically associated with major depressive disorder [J]. Transl Psychiatry, 2021, 11(1): 225. DOI: 10.1038/s41398-021-01348-0.
|
| [18] |
Su WM, Gu XJ, Dou M, et al. Systematic druggable genome-wide Mendelian randomisation identifies therapeutic targets for Alzheimer's disease[J]. J Neurol Neurosurg Psychiatry, 2023, 94(11): 954-961. DOI: 10.1136/jnnp-2023-331142.
|
| [19] |
Ferkingstad E, Sulem P, Atlason BA, et al. Large-scale integration of the plasma proteome with genetics and disease[J]. Nat Genet, 2021, 53(12): 1712-1721. DOI: 10.1038/s41588-021-00978-w.
|
| [20] |
McRae AF, Marioni RE, Shah S, et al. Identification of 55, 000 replicated DNA methylation QTL[J]. Sci Rep, 2018, 8(1): 17605. DOI: 10.1038/s41598-018-35871-w.
|
| [21] |
Wu Y, Zeng J, Zhang F, et al. Integrative analysis of omics summary data reveals putative mechanisms underlying complex traits[J]. Nat Commun, 2018, 9(1): 918. DOI: 10.1038/s41467-018-03371-0.
|
| [22] |
Sreedhar A, Aguilera-Aguirre L, Singh KK. Mitochondria in skin health, aging, and disease[J]. Cell Death Dis, 2020, 11(6): 444. DOI: 10.1038/s41419-020-2649-z.
|
| [23] |
López-Otín C, Blasco MA, Partridge L, et al. Hallmarks of aging: an expanding universe[J]. Cell, 2023, 186(2): 243-278. DOI: 10.1016/j.cell.2022.11.001.
|
| [24] |
Clarke TL, Mostoslavsky R. DNA repair as a shared hallmark in cancer and ageing[J]. Mol Oncol, 2022, 16(18): 3352-3379. DOI: 10.1002/1878-0261.13285.
|
| [25] |
Aging Biomarker Consortium, Bao H, Cao J, et al. Biomarkers of aging[J]. Sci China Life Sci, 2023, 66(5): 893-1066. DOI: 10.1007/s11427-023-2305-0.
|
| [26] |
Zimmermann A, Madreiter-Sokolowski C, Stryeck S, et al. Targeting the mitochondria-proteostasis axis to delay aging [J]. Front Cell Dev Biol, 2021, 9: 656201. DOI: 10.3389/fcell.2021.656201.
|
| [27] |
Wilson N, Kataura T, Korsgen ME, et al. The autophagy-NAD axis in longevity and disease[J]. Trends Cell Biol, 2023, 33(9): 788-802. DOI: 10.1016/j.tcb.2023.02.004.
|
| [28] |
Tokarz J, Möller G, Artati A, et al. Common muscle metabolic signatures highlight arginine and lysine metabolism as potential therapeutic targets to combat unhealthy aging[J]. Int J Mol Sci, 2021, 22 (15): 7958. DOI: 10.3390/ijms22157958.
|
| [29] |
Weng Z, Wang Y, Ouchi T, et al. Mesenchymal stem/stromal cell senescence: hallmarks, mechanisms, and combating strategies[J]. Stem Cells Transl Med, 2022, 11(4): 356-371. DOI: 10.1093/stcltm/szac004.
|
| [30] |
Zheng L, He S, Wang H, et al. Targeting cellular senescence in aging and age-related diseases: challenges, considerations, and the emerging role of senolytic and senomorphic therapies[J]. Aging Dis, 2024, 15(6): 2554-2594. DOI: 10.14336/AD.2024.0206.
|
| [31] |
Lv H, Gao N, Zhou Q, et al. Collagen-based dissolving microneedles with flexible pedestals: a transdermal delivery system for both anti-aging and skin diseases[J]. Adv Healthc Mater, 2023, 12(21): e2203295. DOI: 10.1002/adhm.202203295.
|
| [32] |
Tran DK, Phuong T, Bui NL, et al. Exploring the potential of stem cell-based therapy for aesthetic and plastic surgery [J]. IEEE Rev Biomed Eng, 2023, 16: 386-402. DOI: 10.1109/RBME.2021.3134994.
|
| [33] |
Montoni A, George KM, Soeur J, et al. Chronic UVA1 irradiation of human dermal fibroblasts: persistence of DNA damage and validation of a cell cultured-based model of photoaging[J]. J Invest Dermatol, 2019, 139(8): 1821-1824.e3. DOI: 10.1016/j.jid.2019.02.022.
|
| [34] |
Cenizo V, André V, Reymermier C, et al. LOXL as a target to increase the elastin content in adult skin: a dill extract induces the LOXL gene expression[J]. Exp Dermatol, 2006, 15(8): 574-581. DOI: 10.1111/j.1600-0625.2006.00442.x.
|
| [35] |
Majora M, Wittkampf T, Schuermann B, et al. Functional consequences of mitochondrial DNA deletions in human skin fibroblasts: increased contractile strength in collagen lattices is due to oxidative stress-induced lysyl oxidase activity[J]. Am J Pathol, 2009, 175(3): 1019-1029. DOI: 10.2353/ajpath.2009.080832.
|
| [36] |
Weihermann AC, de Carvalho CM, Schuck DC, et al. Modulation of photoaging-induced cutaneous elastin: evaluation of gene and protein expression of markers related to elastogenesis under different photoexposure conditions[J]. Dermatol Ther (Heidelb), 2021, 11(6): 2043-2056. DOI: 10.1007/s13555-021-00603-y.
|
| [37] |
Renard E, Chadjichristos C, Kypriotou M, et al. Chondroitin sulphate decreases collagen synthesis in normal and scleroderma fibroblasts through a Smad-independent TGF-beta pathway--implication of C-Krox and Sp1[J]. J Cell Mol Med, 2008, 12(6B): 2836-2847. DOI: 10.1111/j.1582-4934.2008.00287.x.
|
| [38] |
Li C, Stoma S, Lotta LA, et al. Genome-wide association analysis in humans links nucleotide metabolism to leukocyte telomere length[J]. Am J Hum Genet, 2020, 106(3): 389-404. DOI: 10.1016/j.ajhg.2020.02.006.
|
| [39] |
Villicaña S, Castillo-Fernandez J, Hannon E, et al. Genetic impacts on DNA methylation help elucidate regulatory genomic processes[J]. Genome Biol, 2023, 24(1): 176. DOI: 10.1186/s13059-023-03011-x.
|
| [40] |
Zhu H, Ren S, Bitler BG, et al. SPOP E3 ubiquitin ligase adaptor promotes cellular senescence by degrading the SENP7 deSUMOylase[J]. Cell Rep, 2015, 13(6): 1183-1193. DOI: 10.1016/j.celrep.2015.09.083.
|
| [41] |
Wang H, Guan T, Hu R, et al. Targeting KAT7 inhibits the progression of colorectal cancer[J]. Theranostics, 2025, 15(4): 1478-1495. DOI: 10.7150/thno.106085.
|
| [42] |
He L, Khanal P, Morse CI, et al. Differentially methylated gene patterns between age-matched sarcopenic and non-sarcopenic women[J]. J Cachexia Sarcopenia Muscle, 2019, 10(6): 1295-1306. DOI: 10.1002/jcsm.12478.
|
| [43] |
Li J, Hu S, Zhang Z, et al. LASP2 is downregulated in human liver cancer and contributes to hepatoblastoma cell malignant phenotypes through MAPK/ERK pathway[J]. Biomed Pharmacother, 2020, 127: 110154. DOI: 10.1016/j.biopha.2020.110154.
|
| [44] |
Yomogida K, Trsan T, Sudan R, et al. The transcription factor Aiolos restrains the activation of intestinal intraepithelial lymphocytes[J]. Nat Immunol, 2024, 25(1): 77-87. DOI: 10.1038/s41590-023-01693-w.
|
| [45] |
Mariani JN, Mansky B, Madsen PM, et al. Repression of developmental transcription factor networks triggers aging-associated gene expression in human glial progenitor cells[J]. Nat Commun, 2024, 15(1): 3873. DOI: 10.1038/s41467-024-48118-2.
|