| Citation: | Zhong SY,Shu MG,Du HC.Current status, representative devices, and future development trends of wound measurement technologies[J].Chin J Burns Wounds,2025,41(10):1004-1010.DOI: 10.3760/cma.j.cn501225-20241231-00516. |
| [1] |
VogelS, RichterJ, WacheS, et al. Evaluation of a clinical decision support system in the domain of chronic wound management[J]. Stud Health Technol Inform, 2021,281:535-539. DOI: 10.3233/SHTI210228.
|
| [2] |
KieserDC, HammondC. Leading wound care technology: the ARANZ medical silhouette[J]. Adv Skin Wound Care, 2011,24(2):68-70. DOI: 10.1097/01.ASW.0000394028.64777.f7.
|
| [3] |
DarwinES, JallerJA, HirtPA, et al. Comparison of 3-dimensional wound measurement with laser-assisted and hand measurements: a retrospective chart review[J]. Wound Manag Prev, 2019,65(1):36-41.
|
| [4] |
LiuH, SunW, CaiW, et al. Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics[J]. Theranostics, 2025, 15(5): 1662-1688. DOI: 10.7150/thno.105109.
|
| [5] |
LangemoDK, MellandH, HansonD, et al. Two-dimensional wound measurement: comparison of 4 techniques[J]. Adv Wound Care, 1998,11(7):337-343.
|
| [6] |
LangemoD, AndersonJ, HansonD, et al. Measuring wound length, width, and area: which technique?[J]. Adv Skin Wound Care, 2008,21(1):42-45; quiz 45-47. DOI: 10.1097/01.ASW.0000284967.69863.2f.
|
| [7] |
马燕飞, 宁宁, 陈佳丽, 等. 临床伤口测量方法研究新进展[J]. 四川医学, 2022, 43(10):1033-1036. DOI: 10.16252/j.cnki.issn1004-0501-2022.10.015.
|
| [8] |
JørgensenLB, SørensenJA, JemecGB, et al. Methods to assess area and volume of wounds - a systematic review[J]. Int Wound J, 2016,13(4):540-553. DOI: 10.1111/iwj.12472.
|
| [9] |
KhooR, JansenS. The evolving field of wound measurement techniques: a literature review[J]. Wounds, 2016,28(6):175-181.
|
| [10] |
ChangAC, DearmanB, GreenwoodJE. A comparison of wound area measurement techniques: visitrak versus photography[J]. Eplasty, 2011,11:e18.
|
| [11] |
ShamloulN, GhiasMH, KhachemouneA. The utility of smartphone applications and technology in wound healing[J]. Int J Low Extrem Wounds, 2019,18(3):228-235. DOI: 10.1177/1534734619853916.
|
| [12] |
StocktonKA, McMillanCM, StoreyKJ, et al. 3D photography is as accurate as digital planimetry tracing in determining burn wound area[J]. Burns, 2015,41(1):80-84. DOI: 10.1016/j.burns.2014.04.022.
|
| [13] |
SpinczykD, WidełM. Surface area estimation for application of wound care[J]. Injury, 2017,48(3):653-658. DOI: 10.1016/j.injury.2017.01.027.
|
| [14] |
KuangB, PenaG, SzpakZ, et al. Assessment of a smartphone-based application for diabetic foot ulcer measurement[J]. Wound Repair Regen, 2021,29(3):460-465. DOI: 10.1111/wrr.12905.
|
| [15] |
Gee KeeEL, KimbleRM, StocktonKA. 3D photography is a reliable burn wound area assessment tool compared to digital planimetry in very young children[J]. Burns, 2015,41(6):1286-1290. DOI: 10.1016/j.burns.2015.01.020.
|
| [16] |
RogersLC, BevilacquaNJ, ArmstrongDG, et al. Digital planimetry results in more accurate wound measurements: a comparison to standard ruler measurements[J]. J Diabetes Sci Technol, 2010,4(4):799-802. DOI: 10.1177/193229681000400405.
|
| [17] |
ShahA, WollakC, ShahJB. Wound measurement techniques: comparing the use of ruler method, 2D imaging and 3D scanner[J]. J Am Coll Clin Wound Spec, 2013,5(3):52-57. DOI: 10.1016/j.jccw.2015.02.001.
|
| [18] |
BowlingFL, PatersonJ, NdipA. Applying 21st century imaging technology to wound healing: an Avant-Gardist approach[J]. J Diabetes Sci Technol, 2013,7(5):1190-1194. DOI: 10.1177/193229681300700536.
|
| [19] |
TreuilletS, AlbouyB, LucasY. Three-dimensional assessment of skin wounds using a standard digital camera[J]. IEEE Trans Med Imaging, 2009,28(5):752-762. DOI: 10.1109/TMI.2008.2012025.
|
| [20] |
PlassmannP, JonesTD. MAVIS: a non-invasive instrument to measure area and volume of wounds. Measurement of Area and Volume Instrument System[J]. Med Eng Phys, 1998,20(5):332-338. DOI: 10.1016/s1350-4533(98)00034-4.
|
| [21] |
KrouskopTA, BakerR, WilsonMS. A noncontact wound measurement system[J]. J Rehabil Res Dev, 2002,39(3):337-345.
|
| [22] |
FoltynskiP, CiechanowskaA, LadyzynskiP. Wound surface area measurement methods[J]. Biocybern Biomed Eng, 2021, 41(4):1454-1465. DOI: 10.1016/j.bbe.2021.04.011.
|
| [23] |
McCardleJ, SmithM, BrewinE, et al. Visitrak: wound measurement as an aid to making treatment decisions[J]. Diabet Foot J, 2005, 8(4):207.
|
| [24] |
FoltynskiP. Ways to increase precision and accuracy of wound area measurement using smart devices: advanced app Planimator[J]. PLoS One, 2018,13(3):e0192485. DOI: 10.1371/journal.pone.0192485.
|
| [25] |
FoltynskiP, LadyzynskiP. Digital planimetry with a new adaptive calibration procedure results in accurate and precise wound area measurement at curved surfaces[J]. J Diabetes Sci Technol, 2022,16(1):128-136. DOI: 10.1177/1932296820959346.
|
| [26] |
DerwinR, PattonD, StrappH, et al. Integrating point-of-care bacterial fluorescence imaging-guided care with continued wound measurement for enhanced wound area reduction monitoring[J]. Diagnostics (Basel), 2023, 14(1):2. DOI: 10.3390/diagnostics14010002.
|
| [27] |
RedmondS, LewisCJ, RoweS, et al. The use of MolecuLight™ for early detection of colonisation in dermal templates[J]. Burns, 2019,45(8):1940-1942. DOI: 10.1016/j.burns.2019.10.011.
|
| [28] |
LeL, BaerM, BriggsP, et al. Diagnostic accuracy of point-of-care fluorescence imaging for the detection of bacterial burden in wounds: results from the 350-patient fluorescence imaging assessment and guidance trial[J]. Adv Wound Care (New Rochelle), 2021,10(3):123-136. DOI: 10.1089/wound.2020.1272.
|
| [29] |
曹子龙, 安恬, 王立芝, 等. eKare inSight 3D创面管理系统在创面评估中的应用[J].山东医药,2018,58(45):92-94. DOI: 10.3969/j.issn.1002-266X.2018.45.026.
|
| [30] |
BillsJD, BerrimanSJ, NobleDL, et al. Pilot study to evaluate a novel three-dimensional wound measurement device[J]. Int Wound J, 2016,13(6):1372-1377. DOI: 10.1111/iwj.12534.
|
| [31] |
How accurate and reliable is inSight? [EB/OL]. (2021-04-07)[2024-12-31]. https://ekareinchelp.zendesk.com/hc/en-us/articles/224912447-How-accurate-and-reliable-is-inSight. |
| [32] |
AlonsoMC, MohammedHT, FraserRD, et al. Comparison of wound surface area measurements obtained using clinically validated artificial intelligence-based technology versus manual methods and the effect of measurement method on debridement code reimbursement cost[J]. Wounds, 2023,35(10):E330-E338.
|
| [33] |
WangSC, AndersonJAE, EvansR, et al. Point-of-care wound visioning technology: reproducibility and accuracy of a wound measurement app[J]. PLoS One, 2017,12(8):e0183139. DOI: 10.1371/journal.pone.0183139.
|
| [34] |
FoltynskiP, LadyzynskiP, CiechanowskaA, et al. Wound area measurement with digital planimetry: improved accuracy and precision with calibration based on 2 rulers[J]. PLoS One, 2015,10(8):e0134622. DOI: 10.1371/journal.pone.0134622.
|
| [35] |
FoltynskiP, LadyzynskiP, SabalinskaS, et al. Accuracy and precision of selected wound area measurement methods in diabetic foot ulceration[J]. Diabetes Technol Ther, 2013,15(8):712-721. DOI: 10.1089/dia.2013.0026.
|
| [36] |
FoltynskiP, LadyzynskiP, WojcickiJM. A new smartphone-based method for wound area measurement[J]. Artif Organs, 2014,38(4):346-352. DOI: 10.1111/aor.12169.
|
| [37] |
DunhamD, TeeneL. Wound measurement software on a point-of-care, digital imaging device for verification of measurement accuracy[EB/OL]. (2018-09-11) [2024-12-31]. https://moleculight.com/posters/objective-wound-measurement-software-point-of-care-hand-held-fluorescence-imaging-device-verification-measurement-accuracy-repeatability/. |
| [38] |
赵楠, 周秋红, 许景灿, 等. 糖尿病足溃疡物理维度测量工具和技术的范围综述[J].解放军护理杂志,2021,38(11):69-72. DOI: 10.3969/j.issn.1008-9993.2021.11.018.
|
| [39] |
QueenD. Artificial intelligence and machine learning in wound care-the wounded machine![J]. Int Wound J, 2019,16(2):311. DOI: 10.1111/iwj.13108.
|
| [40] |
JungK, CovingtonS, SenCK, et al. Rapid identification of slow healing wounds[J]. Wound Repair Regen, 2016,24(1):181-188. DOI: 10.1111/wrr.12384.
|
| [41] |
SarpS, KuzluM, ZhaoY, et al. Digital twin in healthcare: a study for chronic wound management[J]. IEEE J Biomed Health Inform, 2023,27(11):5634-5643. DOI: 10.1109/JBHI.2023.3299028.
|
| [42] |
AnisuzzamanDM, WangC, RostamiB, et al. Image-based artificial intelligence in wound assessment: a systematic review[J]. Adv Wound Care (New Rochelle), 2022,11(12):687-709. DOI: 10.1089/wound.2021.0091.
|
| [43] |
JoplingJK, PridgenBC, YeungS. Setting assessment standards for artificial intelligence computer vision wound annotations[J]. JAMA Netw Open, 2021,4(5):e217851. DOI: 10.1001/jamanetworkopen.2021.7851.
|
| [44] |
ShahnazA, QamarU, KhalidA. Using blockchain for electronic health records[J]. IEEE Access, 2019, 7:147782-147795. DOI: 10.1109/ACCESS.2019.2946373.
|
| [45] |
HowellRS, LiuHH, KhanAA, et al. Development of a method for clinical evaluation of artificial intelligence-based digital wound assessment tools[J]. JAMA Netw Open, 2021,4(5):e217234. DOI: 10.1001/jamanetworkopen.2021.7234.
|
| [46] |
彭雨馨, 付光蕾. 人工智能在感染伤口管理中的应用进展[J].军事护理,2023,40(12):85-88. DOI: 10.3969/j.issn.2097-1826.2023.12.021.
|