| Citation: | Tang LJ,Fan LH,Wang JR,et al.Effect and mechanism of astaxanthin on the aging of high glucose-treated human skin fibroblasts[J].Chin J Burns Wounds,2025,41(11):1101-1110.DOI: 10.3760/cma.j.cn501225-20250109-00018. |
| [1] |
TomicD, ShawJE, MaglianoDJ. The burden and risks of emerging complications of diabetes mellitus[J]. Nat Rev Endocrinol, 2022, 18(9): 525-539.DOI: 10.1038/s41574-022-00690-7.
|
| [2] |
李威杰,秦晓光,朱甜,等. 减重与代谢外科新进展[J]. 中华消化外科杂志,2023,22(8):958-964.DOI: 10.3760/cma.j.cn115610-20230711-00399.
|
| [3] |
BurgessJL, WyantWA, Abdo AbujamraB, et al. Diabetic wound-healing science[J]. Medicina (Kaunas), 2021, 57(10):1072.DOI: 10.3390/medicina57101072.
|
| [4] |
WolfSJ, MelvinWJ, GallagherK. Macrophage-mediated inflammation in diabetic wound repair[J]. Semin Cell Dev Biol, 2021, 119: 111-118.DOI: 10.1016/j.semcdb.2021.06.013.
|
| [5] |
StoneA, DonohueCM. Diabetic foot ulcers in geriatric patients[J]. Clin Geriatr Med, 2024, 40(3): 437-447.DOI: 10.1016/j.cger.2024.03.002.
|
| [6] |
WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223.DOI: 10.1098/rsob.200223.
|
| [7] |
DengL, DuC, SongP, et al. The role of oxidative stress and antioxidants in diabetic wound healing[J]. Oxid Med Cell Longev, 2021, 2021: 8852759.DOI: 10.1155/2021/8852759.
|
| [8] |
MuX, WuX, HeW, et al. Pyroptosis and inflammasomes in diabetic wound healing[J]. Front Endocrinol (Lausanne), 2022, 13: 950798.DOI: 10.3389/fendo.2022.950798.
|
| [9] |
NeaguM, ConstantinC, SurcelM, et al. Diabetic neuropathy: a NRF2 disease?[J]. J Diabetes, 2024, 16(9): e13524.DOI: 10.1111/1753-0407.13524.
|
| [10] |
ZhangDD. Thirty years of NRF2: advances and therapeutic challenges[J]. Nat Rev Drug Discov, 2025, 24(6): 421-444.DOI: 10.1038/s41573-025-01145-0.
|
| [11] |
郭佳,张军霞. 核转录因子红系2相关因子2在创面愈合中的作用研究进展[J]. 中华烧伤与创面修复杂志,2023,39(1): 91-95.DOI: 10.3760/cma.j.cn501225-20220531-00209.
|
| [12] |
UrakazeM, KobashiC, SatouY, et al. The beneficial effects of astaxanthin on glucose metabolism and modified low-density lipoprotein in healthy volunteers and subjects with prediabetes[J]. Nutrients, 2021, 13(12):4381.DOI: 10.3390/nu13124381.
|
| [13] |
NishidaY, BergPC, ShakersainB, et al. Astaxanthin: past, present, and future[J]. Mar Drugs, 2023, 21(10):514.DOI: 10.3390/md21100514.
|
| [14] |
ZhangQ, LuoC, LiZ, et al. Astaxanthin activates the Nrf2/Keap1/HO-1 pathway to inhibit oxidative stress and ferroptosis, reducing triphenyl phosphate (TPhP)-induced neurodevelopmental toxicity[J]. Ecotoxicol Environ Saf, 2024, 271: 115960.DOI: 10.1016/j.ecoenv.2024.115960.
|
| [15] |
HafezMH, El-FarAH, ElblehiSS. Astaxanthin alleviates fipronil-induced neuronal damages in male rats through modulating oxidative stress, apoptosis, and inflammatory markers[J]. Sci Rep, 2025, 15(1): 14299.DOI: 10.1038/s41598-025-95447-3.
|
| [16] |
ZhuY, RuanCX, WangJ, et al. High glucose inhibits the survival of HRMCs and its mechanism[J]. Eur Rev Med Pharmacol Sci, 2022, 26(16): 5683-5688.DOI: 10.26355/eurrev_202208_29502.
|
| [17] |
ZhangZ, QiuY, LiW, et al. Astaxanthin alleviates foam cell formation and promotes cholesterol efflux in ox-LDL-induced RAW264.7 cells via circTPP2/miR-3073b-5p/ABCA1 pathway[J]. Molecules, 2023, 28(4):1701.DOI: 10.3390/molecules28041701.
|
| [18] |
YangCS, GuoXS, YueYY, et al. Astaxanthin promotes the survival of adipose-derived stem cells by alleviating oxidative stress via activating the Nrf2 signaling pathway[J]. Int J Mol Sci, 2023, 24(4):3850.DOI: 10.3390/ijms24043850.
|
| [19] |
JuCC, LiuXX, LiuLH, et al. Epigenetic modification: a novel insight into diabetic wound healing[J]. Heliyon, 2024, 10(6): e28086.DOI: 10.1016/j.heliyon.2024.e28086.
|
| [20] |
WangG, YangF, ZhouW, et al. The initiation of oxidative stress and therapeutic strategies in wound healing[J]. Biomed Pharmacother, 2023, 157: 114004.DOI: 10.1016/j.biopha.2022.114004.
|
| [21] |
LiuY, LiuY, HeW, et al. Fibroblasts: immunomodulatory factors in refractory diabetic wound healing[J]. Front Immunol, 2022, 13: 918223.DOI: 10.3389/fimmu.2022.918223.
|
| [22] |
FengJ, WangJ, WangY, et al. Oxidative stress and lipid peroxidation: prospective associations between ferroptosis and delayed wound healing in diabetic ulcers[J]. Front Cell Dev Biol, 2022, 10: 898657.DOI: 10.3389/fcell.2022.898657.
|
| [23] |
HuangK, MiB, XiongY, et al. Angiogenesis during diabetic wound repair: from mechanism to therapy opportunity[J/OL]. Burns Trauma, 2025, 13: tkae052[2025-08-18].https://pubmed.ncbi.nlm.nih.gov/39927093/.DOI: 10.1093/burnst/tkae052.
|
| [24] |
CitrinKM, ChaubeB, Fernández-HernandoC, et al. Intracellular endothelial cell metabolism in vascular function and dysfunction[J]. Trends Endocrinol Metab, 2025, 36(8): 744-755.DOI: 10.1016/j.tem.2024.11.004.
|
| [25] |
GasekNS, YanP, ZhuJ, et al. Clearance of p21 highly expressing senescent cells accelerates cutaneous wound healing[J]. Nat Aging, 2025, 5(1): 21-27.DOI: 10.1038/s43587-024-00755-4.
|
| [26] |
ZhangS, MengN, LiuS, et al. Targeting senescent HDF with the USP7 inhibitor P5091 to enhance DFU wound healing through the p53 pathway[J]. Biochem Biophys Res Commun, 2024, 722: 150149.DOI: 10.1016/j.bbrc.2024.150149.
|
| [27] |
SamarawickramaPN, ZhangG, ZhuE, et al. Clearance of senescent cells enhances skin wound healing in type 2 diabetic mice[J]. Theranostics, 2024, 14(14): 5429-5442.DOI: 10.7150/thno.100991.
|
| [28] |
McElhinneyK, IrnatenM, O'BrienC. P53 and myofibroblast apoptosis in organ fibrosis[J]. Int J Mol Sci, 2023, 24(7):6737.DOI: 10.3390/ijms24076737.
|
| [29] |
MaZ, DingY, DingX, et al. PDK4 rescues high-glucose-induced senescent fibroblasts and promotes diabetic wound healing through enhancing glycolysis and regulating YAP and JNK pathway[J]. Cell Death Discov, 2023, 9(1): 424.DOI: 10.1038/s41420-023-01725-2.
|
| [30] |
QinY, WuK, ZhangZ, et al. NLRC3 deficiency promotes cutaneous wound healing due to the inhibition of p53 signaling[J]. Biochim Biophys Acta Mol Basis Dis, 2022, 1868(11): 166518.DOI: 10.1016/j.bbadis.2022.166518.
|
| [31] |
JiangG, JiangT, ChenJ, et al. Mitochondrial dysfunction and oxidative stress in diabetic wound[J]. J Biochem Mol Toxicol, 2023, 37(7): e23407.DOI: 10.1002/jbt.23407.
|
| [32] |
QinY, LiuH, WuH. Cellular senescence in health, disease, and lens aging[J]. Pharmaceuticals (Basel), 2025, 18(2):244.DOI: 10.3390/ph18020244.
|
| [33] |
ChoiH, KangC. Living beyond restriction: LBR promotes cellular immortalization by suppressing genomic instability and senescence[J]. FEBS J, 2024, 291(10): 2091-2093.DOI: 10.1111/febs.17141.
|
| [34] |
Mahiny-ShahmohammadyD, HauckL, BilliaF. Defining the molecular underpinnings controlling cardiomyocyte proliferation[J]. Clin Sci (Lond), 2022, 136(12): 911-934.DOI: 10.1042/CS20211180.
|
| [35] |
O'ReillyS, MarkiewiczE, IdowuOC. Aging, senescence, and cutaneous wound healing-a complex relationship[J]. Front Immunol, 2024, 15: 1429716.DOI: 10.3389/fimmu.2024.1429716.
|
| [36] |
ÅgrenMS, LitmanT, EriksenJO, et al. Gene expression linked to reepithelialization of human skin wounds[J]. Int J Mol Sci, 2022, 23(24):15746.DOI: 10.3390/ijms232415746.
|
| [37] |
JacquierEF, KassisA, MarcuD, et al. Phytonutrients in the promotion of healthspan: a new perspective[J]. Front Nutr, 2024, 11: 1409339.DOI: 10.3389/fnut.2024.1409339.
|
| [38] |
KanwuguON, GlukharevaTV, DanilovaIG, et al. Natural antioxidants in diabetes treatment and management: prospects of astaxanthin[J]. Crit Rev Food Sci Nutr, 2022, 62(18): 5005-5028.DOI: 10.1080/10408398.2021.1881434.
|
| [39] |
商冠华,田春梅. Nrf2信号通路作为虾青素治疗新靶点的研究进展[J]. 国际医药卫生导报,2024,30(1): 20-24.DOI: 10.3760/cma.j.issn.1007-1245.2024.01.004.
|
| [40] |
LvB, XingS, WangZ, et al. NRF2 inhibitors: recent progress, future design and therapeutic potential[J]. Eur J Med Chem, 2024, 279: 116822.DOI: 10.1016/j.ejmech.2024.116822.
|