| Citation: | Shi MS,Liang XY,Zhang R,et al.Performance of hyaluronic acid biogel and its effect on healing of infected burn wounds in mice[J].Chin J Burns Wounds,2025,41(10):949-957.DOI: 10.3760/cma.j.cn501225-20250422-00186. |
| [1] |
WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring[J]. Adv Drug Deliv Rev, 2018, 123: 3-17. DOI: 10.1016/j.addr.2017.09.018.
|
| [2] |
CuiW, GongC, LiuY, et al. Composite antibacterial hydrogels based on two natural products pullulan and ε-poly-l-lysine for burn wound healing[J]. Int J Biol Macromol, 2024,277(Pt 2):134208. DOI: 10.1016/j.ijbiomac.2024.134208.
|
| [3] |
SinghH, HassanS, NabiSU, et al. Multicomponent decellularized extracellular matrix of caprine small intestine submucosa based bioactive hydrogel promoting full-thickness burn wound healing in rabbits[J]. Int J Biol Macromol, 2024,255:127810. DOI: 10.1016/j.ijbiomac.2023.127810.
|
| [4] |
PereiraRF, BarriasCC, GranjaPL, et al. Advanced biofabrication strategies for skin regeneration and repair[J]. Nanomedicine (Lond), 2013,8(4):603-621. DOI: 10.2217/nnm.13.50.
|
| [5] |
YaoY, ZhangA, YuanC, et al. Recent trends on burn wound care: hydrogel dressings and scaffolds[J]. Biomater Sci, 2021,9(13):4523-4540. DOI: 10.1039/d1bm00411e.
|
| [6] |
PalackicA, JayJW, DugganRP, et al. Therapeutic strategies to reduce burn wound conversion[J]. Medicina (Kaunas), 2022, 58(7):922. DOI: 10.3390/medicina58070922.
|
| [7] |
NuhijiE. Trends and innovation in negative pressure wound therapy: a review of burn wound management[J]. Adv Wound Care (New Rochelle), 2024,13(8):391-399. DOI: 10.1089/wound.2023.0114.
|
| [8] |
RoseLF, ChanRK. The burn wound microenvironment[J]. Adv Wound Care (New Rochelle), 2016,5(3):106-118. DOI: 10.1089/wound.2014.0536.
|
| [9] |
SongJH, GuJT, DangGP, et al. DNA-collagen dressing for promoting scarless healing in early burn wound management[J]. Adv Compos Hybrid Mater, 2025, 8: 212. DOI: 10.1007/s42114-025-01295-0.
|
| [10] |
LiuW, HuangH, ShuF, et al. AntagomiR-192-5p-engineered exosomes encapsulated in MXene-modified GelMA hydrogel facilitated epithelization of burn wounds by targeting OLFM4[J]. Bioact Mater, 2025,52:318-337. DOI: 10.1016/j.bioactmat.2025.06.013.
|
| [11] |
LiX, WangW, GaoQ, et al. Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing[J]. Exploration (Beijing), 2024,4(6):20230113. DOI: 10.1002/EXP.20230113.
|
| [12] |
MaJ, LiS, ZhangL, et al. Oxidative stress-scavenging thermo-activated MXene hydrogel for rapid repair of MRSA impaired wounds and burn wounds[J]. Mater Today, 2024, 80: 139-155. DOI: 10.1016/j.mattod.2024.08.010.
|
| [13] |
HataY, MiyazakiH, OkamotoS, et al. Nanospiked cellulose gauze that attracts bacteria with biomolecules for reducing bacterial load in burn wounds[J]. Nano Letters, 2025, 25(3): 1177-1184. DOI: 10.1021/acs.nanolett.4c05773.
|
| [14] |
MaslovaE, EisaiankhongiL, SjöbergF, et al. Burns and biofilms: priority pathogens and in vivo models[J]. NPJ Biofilms Microbiomes, 2021,7(1):73. DOI: 10.1038/s41522-021-00243-2.
|
| [15] |
董云青,李琳琳,朱宣儒,等. 含银黏性水凝胶的制备及其在小鼠细菌定植全层皮肤缺损创面愈合中的作用[J]. 中华烧伤杂志, 2021, 37(11): 1036-1047. DOI: 10.3760/cma.j.cn501120-20210906-00304.
|
| [16] |
RibeiroMM, SimõesM, VitorinoC, et al. Physical crosslinking of hydrogels: the potential of dynamic and reversible bonds in burn care[J]. Coord Chem Rev, 2025, 542: 216868. DOI: 10.1016/j.ccr.2025.216868.
|
| [17] |
LiM, NieJ, LiX, et al. Exudate management, facile detachment, and immunometabolism regulation for wound healing using breathable dressings[J]. ACS Appl Mater Interfaces, 2025, 17(15): 22394-22409. DOI: 10.1021/acsami.5c01729.
|
| [18] |
顾雅男, 徐翔昊, 王彦平, 等. 氧化铈纳米酶-甲基丙烯酸酐化明胶水凝胶在小鼠全层皮肤缺损感染创面修复中的作用[J].中华烧伤与创面修复杂志,2024,40(2):131-140. DOI: 10.3760/cma.j.cn501225-20231120-00201.
|
| [19] |
ZhangZ, LiW, LiuY, et al. Design of a biofluid-absorbing bioactive sandwich-structured Zn-Si bioceramic composite wound dressing for hair follicle regeneration and skin burn wound healing[J]. Bioact Mater, 2021,6(7):1910-1920. DOI: 10.1016/j.bioactmat.2020.12.006.
|
| [20] |
WangX, SunX, ZengY, et al. Membrane fusion strategy boosts immune homeostasis, mobilizing macrophages to eliminate bacteria and acccelerate skin regeneration in infected burn wound[J]. Adv Funct Mater, 2025, 35(10): 2416791. DOI: 10.1002/adfm.202416791.
|
| [21] |
GallaherJR, BandaW, LachiewiczAM, et al. Predictors of multi-drug resistance in burn wound colonization following burn injury in a resource-limited setting[J]. Burns, 2021,47(6):1308-1313. DOI: 10.1016/j.burns.2020.12.007.
|
| [22] |
NoorA, AfzalA, MasoodR, et al. Dressings for burn wound: a review[J]. J Mater Sci, 2022, 57: 6536-6572. DOI: 10.1007/s10853-022-07056-4.
|
| [23] |
YeongEK, ShengWH, HsuehPR, et al. The wound microbiology and the outcomes of the systemic antibiotic prophylaxis in a mass burn casualty incident[J]. J Burn Care Res, 2020, 41(1): 95-103. DOI: 10.1093/jbcr/irz077.
|
| [24] |
HuangY, MuL, ZhaoX, et al. Bacterial growth-induced tobramycin smart release self-healing hydrogel for Pseudomonas aeruginosa-infected burn wound healing[J]. ACS Nano, 2022,16(8):13022-13036. DOI: 10.1021/acsnano.2c05557.
|
| [25] |
KantakNA, MistryR, VaronDE, et al. Negative pressure wound therapy for burns[J]. Clin Plast Surg, 2017, 44(3): 671-677. DOI: 10.1016/j.cps.2017.02.023.
|
| [26] |
SalwowskaNM, BebenekKA, ŻądłoDA, et al. Physiochemical properties and application of hyaluronic acid: a systematic review[J]. J Cosmetic Dermatol, 2016, 15(4): 520-526. DOI: 10.1111/jocd.12237.
|
| [27] |
SionkowskaA, GadomskaM, MusiałK, et al. Hyaluronic acid as a component of natural polymer blends for biomedical applications: a review[J]. Molecules, 2020, 25(18):4035.DOI: 10.3390/molecules25184035.
|
| [28] |
黄日中,王裔惟,黄何艳,等. 雄激素及其拮抗剂双重释放系统在小鼠Ⅲ度烧伤创面修复中的应用效果[J]. 中华烧伤与创面修复杂志,2024,40(2): 180-189. DOI: 10.3760/cma.j.cn501225-20230802-00033.
|
| [29] |
HeC, BiS, ZhangR, et al. A hyaluronic acid hydrogel as a mild photothermal antibacterial, antioxidant, and nitric oxide release platform for diabetic wound healing[J]. J Control Release, 2024,370:543-555. DOI: 10.1016/j.jconrel.2024.05.011.
|
| [30] |
LiuS, LiuX, RenY, et al. Mussel-inspired dual-cross-linking hyaluronic acid/ε-polylysine hydrogel with self-healing and antibacterial properties for wound healing[J]. ACS Appl Mater Interfaces, 2020, 12(25): 27876-27888. DOI: 10.1021/acsami.0c00782.
|
| [31] |
Ter HorstB, ChouhanG, MoiemenNS, et al. Advances in keratinocyte delivery in burn wound care[J]. Adv Drug Deliv Rev, 2018,123:18-32. DOI: 10.1016/j.addr.2017.06.012.
|
| [32] |
ShanY, CaoF, ZhaoX, et al. Procoagulant, antibacterial and antioxidant high-strength porous hydrogel adhesives in situ formed via self-gelling hemostatic microsheets for emergency hemostasis and wound repair[J]. Biomaterials, 2025,315:122936. DOI: 10.1016/j.biomaterials.2024.122936.
|
| [33] |
MurakamiK, AokiH, NakamuraS, et al. Hydrogel blends of chitin/chitosan, fucoidan and alginate as healing-impaired wound dressings[J]. Biomaterials, 2010,31(1):83-90. DOI: 10.1016/j.biomaterials.2009.09.031.
|
| [34] |
ChaiL, HuangJ, WangM, et al. Injectable deferoxamine-loaded microsphere hydrogels for inhibition of ferroptosis and promotion of third-degree burn wound healing[J]. Mater Today Bio, 2025,32:101806. DOI: 10.1016/j.mtbio.2025.101806.
|
| [35] |
LeeJ, ShinD, RohJL. Use of a pre-vascularised oral mucosal cell sheet for promoting cutaneous burn wound healing[J]. Theranostics, 2018,8(20):5703-5712. DOI: 10.7150/thno.28754.
|
| [36] |
LanJ, ShiL, XiaoW, et al. A rapid self-pumping organohydrogel dressing with hydrophilic fractal microchannels to promote burn wound healing[J]. Adv Mater, 2023, 35(38): e2301765. DOI: 10.1002/adma.202301765.
|
| [37] |
LiW, YuQ, YaoH, et al. Superhydrophobic hierarchical fiber/bead composite membranes for efficient treatment of burns[J]. Acta Biomater, 2019,92:60-70. DOI: 10.1016/j.actbio.2019.05.025.
|
| [38] |
刘颖, 程凤, 王泽薇, 等. 负载小鼠脂肪干细胞的甲壳素/透明质酸/胶原水凝胶的制备及其对大鼠全层皮肤缺损创面愈合的作用[J].中华烧伤与创面修复杂志,2024,40(1):50-56. DOI: 10.3760/cma.j.cn501225-20230928-00101.
|
| [39] |
KonieczynskaMD, Villa-CamachoJC, GhobrilC, et al. On-demand dissolution of a dendritic hydrogel-based dressing for second-degree burn wounds through thiol-thioester exchange reaction[J]. Angew Chem Int Ed Engl, 2016, 55(34): 9984-9987. DOI: 10.1002/anie.201604827.
|
| [40] |
DehariD, KumarDN, ChaudhuriA, et al. Bacteriophage entrapped chitosan microgel for the treatment of biofilm-mediated polybacterial infection in burn wounds[J]. Int J Biol Macromol, 2023,253(Pt 5):127247. DOI: 10.1016/j.ijbiomac.2023.127247.
|
| [41] |
HeX, LiuL, GuF, et al. Exploration of the anti-inflammatory, analgesic, and wound healing activities of Bletilla Striata polysaccharide[J]. Int J Biol Macromol, 2024,261(Pt 2):129874. DOI: 10.1016/j.ijbiomac.2024.129874.
|
| [42] |
GongY, WangP, CaoR, et al. Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing[J]. ACS Nano, 2023, 17(22): 22355-22370. DOI: 10.1021/acsnano.3c04556.
|
石明生.mp4
|
|