| Citation: | Zhang YW,Bai YL,Zhang XM,et al.Research advances on the application of artificial intelligence technology in the diagnosis and treatment of sepsis patients[J].Chin J Burns Wounds,2025,41(10):998-1003.DOI: 10.3760/cma.j.cn501225-20250708-00292. |
| [1] |
SingerM,DeutschmanCS,SeymourCW,et al.The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J].JAMA,2016,315(8):801-810.DOI: 10.1001/jama.2016.0287.
|
| [2] |
SakrY,JaschinskiU,WitteboleX,et al.Sepsis in intensive care unit patients: worldwide data from the Intensive Care over Nations audit[J].Open Forum Infect Dis,2018,5(12):ofy313.DOI: 10.1093/ofid/ofy313.
|
| [3] |
FleischmannC,ScheragA,AdhikariNK,et al.Assessment of global incidence and mortality of hospital-treated sepsis. Current estimates and limitations[J].Am J Respir Crit Care Med,2016,193(3):259-272.DOI: 10.1164/rccm.201504-0781OC.
|
| [4] |
RuddKE,JohnsonSC,AgesaKM,et al.Global, regional, and national sepsis incidence and mortality, 1990-2017: analysis for the Global Burden of Disease Study[J].Lancet,2020,395(10219):200-211.DOI: 10.1016/S0140-6736(19)32989-7.
|
| [5] |
UsmanAI, 刘思奇,乔云峰,等.人工智能和机器学习在内分泌疾病研究中的前沿进展[J].吉林医学,2025,46(4):946-949.DOI: 10.3969/j.issn.1004-0412.2025.04.055.
|
| [6] |
王晓宁,杨琦,姚娓. 人工智能在辅助中医消化系统疾病诊治中应用研究进展[J]. 中华中医药学刊, 2025, 43(7): 17-21.DOI: 10.13193/j.issn.1673-7717.2025.07.004.
|
| [7] |
张煊,谢瑀,冯亚宁,等.人工智能在预测肾脏疾病预后中的应用与进展[J/OL].中华中医药学刊,(2025-03-19)[2025-07-08]. https://link.cnki.net/urlid/21.1546.R.20250319.0954.002.[网络预发表]. https://link.cnki.net/urlid/21.1546.R.20250319.0954.002
|
| [8] |
刘青光,李涵琪,孙联康. 人工智能技术助力胆道疾病的精准诊疗[J].中华消化外科杂志,2025,24(7):826-831. DOI: 10.3760/cma.j.cn115610-20250514-00196.
|
| [9] |
陈宇曦,罗亮,蒋诗情,等.外泌体多组学分析技术在烧伤脓毒症预警与诊断中应用的研究进展[J].中华烧伤与创面修复杂志,2025,41(7):698-703.DOI: 10.3760/cma.j.cn501225-20250512-00222.
|
| [10] |
KnausWA,DraperEA,WagnerDP,et al.APACHE II: a severity of disease classification system[J].Crit Care Med,1985,13(10):818-829.
|
| [11] |
ChuaWL, RusliKDB, AitkenLM. Early warning scores for sepsis identification and prediction of in-hospital mortality in adults with sepsis: a systematic review and meta-analysis[J]. J Clin Nurs, 2024, 33(6): 2005-2018. DOI: 10.1111/jocn.17061.
|
| [12] |
吴孟春,叶舜华. 脓毒症早期诊断标志物研究进展[J]. 岭南急诊医学杂志, 2025,30(4): 503-505. DOI: 10.3969/j.issn.1671-301X.2025.04.048.
|
| [13] |
申喜凤,李美婷,南嘉乐,等. 医学人工智能发展态势分析及问题浅析[J]. 科技管理研究, 2023(7): 193-198.DOI: 10.3969/j.issn.1000-7695.2023.7.021.
|
| [14] |
山其君,王绍博,周翔. 大语言模型在脓毒症诊疗中的应用研究综述[J]. 中国卫生信息管理杂志, 2025, 22(2): 187-194. DOI: 10.3969/j.issn.1672-5166.2025.02.04.
|
| [15] |
谢天. 基于强化学习的脓毒症治疗策略和死亡风险预测算法研究与应用[D]. 兰州:兰州大学, 2024. |
| [16] |
RhodesA,EvansLE,AlhazzaniW,et al.Surviving Sepsis Campaign: International Guidelines for Management of Sepsis and Septic Shock: 2016[J].Intensive Care Med,2017,43(3):304-377.DOI: 10.1007/s00134-017-4683-6.
|
| [17] |
LiuVX,Fielding-SinghV,GreeneJD,et al.The timing of early antibiotics and hospital mortality in sepsis[J].Am J Respir Crit Care Med,2017,196(7):856-863.DOI: 10.1164/rccm.201609-1848OC.
|
| [18] |
FleurenLM, KlauschTLT, ZwagerCL, et al.Machine learning for the prediction of sepsis: a systematic review and meta-analysis of diagnostic test accuracy[J].Intensive Care Med,2020,46(3):383-400.DOI: 10.1007/s00134-019-05872-y.
|
| [19] |
NematiS,HolderA,RazmiF,et al.An interpretable machine learning model for accurate prediction of sepsis in the ICU[J].Crit Care Med,2018,46(4):547-553.DOI: 10.1097/CCM.0000000000002936.
|
| [20] |
BurdickH,PinoE,Gabel-ComeauD,et al.Effect of a sepsis prediction algorithm on patient mortality, length of stay and readmission: a prospective multicentre clinical outcomes evaluation of real-world patient data from US hospitals[J].BMJ Health Care Inform,2020,27(1):e100109.DOI: 10.1136/bmjhci-2019-100109.
|
| [21] |
ShimabukuroDW,BartonCW,FeldmanMD,et al.Effect of a machine learning-based severe sepsis prediction algorithm on patient survival and hospital length of stay: a randomised clinical trial[J].BMJ Open Respir Res,2017,4(1):e000234.DOI: 10.1136/bmjresp-2017-000234.
|
| [22] |
WangX,GuoZ,WangX,et al.Construction of diagnostic model for regulatory T cell-related genes in sepsis based on machine learning[J].Biomedicines,2025,13(5):1060.DOI: 10.3390/biomedicines13051060.
|
| [23] |
刘辉,童森,姚咏明.脓毒症亚型研究的现状与展望[J].中华急诊医学杂志,2025,34(2):129-132.DOI: 10.3760/cma.j.issn.1671-0282.2025.02.001.
|
| [24] |
LuisChiscano-camón,AdolfRuiz-sanmartin,IvanBajaña, et al. Current perspectives in the management of sepsis and septic shock[J].Front Med (Lausanne), 2024,15:11:1431791.DOI: 10.3389/fmed.2024.1431791.
|
| [25] |
姚咏明,张卉,董宁.脓毒症分型:精准治疗之基石[J].中华烧伤与创面修复杂志,2024,40(10):915-919.DOI: 10.3760/cma.j.cn501225-20240529-00203.
|
| [26] |
SweeneyTE,AzadTD,DonatoM,et al.Unsupervised analysis of transcriptomics in bacterial sepsis across multiple datasets reveals three robust clusters[J].Crit Care Med,2018,46(6):915-925.DOI: 10.1097/CCM.0000000000003084.
|
| [27] |
FjellCD,ThairS,HsuJL,et al.Cytokines and signaling molecules predict clinical outcomes in sepsis[J].PLoS One,2013,8(11):e79207.DOI: 10.1371/journal.pone.0079207.
|
| [28] |
JekarlDW,KimJY,HaJH,et al.Diagnosis and prognosis of sepsis based on use of cytokines, chemokines, and growth factors[J].Dis Markers,2019,2019:1089107.DOI: 10.1155/2019/1089107.
|
| [29] |
DavenportEE,BurnhamKL,RadhakrishnanJ,et al.Genomic landscape of the individual host response and outcomes in sepsis: a prospective cohort study[J].Lancet Respir Med,2016,4(4):259-271.DOI: 10.1016/S2213-2600(16)00046-1.
|
| [30] |
冯春晓,金瑛,林丽君,等. 老年脓毒症病人预后风险预测模型的研究进展[J]. 全科护理, 2025, 23(19): 3655-3659. DOI: 10.12104/j.issn.1674-4748.2025.19.010.
|
| [31] |
HouN,LiM,HeL,et al.Predicting 30-days mortality for MIMIC-III patients with sepsis-3: a machine learning approach using XGboost[J].J Transl Med,2020,18(1):462.DOI: 10.1186/s12967-020-02620-5.
|
| [32] |
WernlyB,MamandipoorB,BaldiaP,et al.Machine learning predicts mortality in septic patients using only routinely available ABG variables: a multi-centre evaluation[J].Int J Med Inform,2021,145:104312.DOI: 10.1016/j.ijmedinf.2020.104312.
|
| [33] |
GuoF,ZhuX,WuZ,et al.Clinical applications of machine learning in the survival prediction and classification of sepsis: coagulation and heparin usage matter[J].J Transl Med,2022,20(1):265.DOI: 10.1186/s12967-022-03469-6.
|
| [34] |
B H,DK M,TM R,et al.Advances in diagnosis and prognosis of bacteraemia, bloodstream infection, and sepsis using machine learning: a comprehensive living literature review[J].Artif Intell Med,2025,160:103008.DOI: 10.1016/j.artmed.2024.103008.
|
| [35] |
LyuW,DongX,WongR,et al.A multimodal transformer: fusing clinical notes with structured EHR data for interpretable in-hospital mortality prediction[J].AMIA Annu Symp Proc,2022,2022:719-728.
|
| [36] |
PeerapornratanaS,Manrique-CaballeroCL,GómezH,et al.Acute kidney injury from sepsis: current concepts, epidemiology, pathophysiology, prevention and treatment[J].Kidney Int,2019,96(5):1083-1099.DOI: 10.1016/j.kint.2019.05.026.
|
| [37] |
SunJ,ZhangJ,TianJ,et al.Mitochondria in sepsis-induced AKI[J].J Am Soc Nephrol,2019,30(7):1151-1161.DOI: 10.1681/ASN.2018111126.
|
| [38] |
van SlobbeR,HerrmannovaD,BoekeDJ,et al.Multimodal convolutional neural networks for the prediction of acute kidney injury in the intensive care[J].Int J Med Inform,2025,196:105815.DOI: 10.1016/j.ijmedinf.2025.105815.
|
| [39] |
LiJ,ZhuM,YanL.Predictive models of sepsis-associated acute kidney injury based on machine learning: a scoping review[J].Ren Fail,2024,46(2):2380748.DOI: 10.1080/0886022X.2024.2380748.
|
| [40] |
GhanbariG,LamJY,ShashikumarSP,et al.Development and validation of a deep learning algorithm for the prediction of serum creatinine in critically ill patients[J].JAMIA Open,2024,7(3):ooae097.DOI: 10.1093/jamiaopen/ooae097.
|
| [41] |
LvX,LiuD,ChenX,et al.Machine learning for the prediction of mortality in patients with sepsis-associated acute kidney injury: a systematic review and meta-analysis[J].BMC Infect Dis,2024,24(1):1454.DOI: 10.1186/s12879-024-10380-6.
|
| [42] |
WuCC,PolyTN,WengYC,et al.Machine learning models for predicting mortality in critically ill patients with sepsis-associated acute kidney injury: a systematic review[J].Diagnostics (Basel),2024,14(15):1594.DOI: 10.3390/diagnostics14151594.
|
| [43] |
ZhaoH,CaiX,LiuN,et al.Thromboelastography as a tool for monitoring blood coagulation dysfunction after adequate fluid resuscitation can predict poor outcomes in patients with septic shock[J].J Chin Med Assoc,2020,83(7):674-677.DOI: 10.1097/JCMA.0000000000000345.
|
| [44] |
CuiR,HuaW,QuK,et al.An interpretable early dynamic sequential predictor for sepsis-induced coagulopathy progression in the real-world using machine learning[J].Front Med (Lausanne),2021,8:775047.DOI: 10.3389/fmed.2021.775047.
|
| [45] |
ZhaoQY,LiuLP,LuoJC,et al.A machine-learning approach for dynamic prediction of sepsis-induced coagulopathy in critically ill patients with sepsis[J].Front Med (Lausanne),2021,7:637434.DOI: 10.3389/fmed.2020.637434.
|
| [46] |
Shankar-HariM,PhillipsGS,LevyML,et al.Developing a new definition and assessing new clinical criteria for septic shock: for the Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3)[J].JAMA,2016,315(8):775-787.DOI: 10.1001/jama.2016.0289.
|
| [47] |
GianniniHM,GinestraJC,ChiversC,et al.A machine learning algorithm to predict severe sepsis and septic shock: development, implementation, and impact on clinical practice[J].Crit Care Med,2019,47(11):1485-1492.DOI: 10.1097/CCM.0000000000003891.
|
| [48] |
MisraD,AvulaV,WolkDM,et al.Early detection of septic shock onset using interpretable machine learners[J].J Clin Med,2021,10(2):301.DOI: 10.3390/jcm10020301.
|
| [49] |
ZengQB,PengEL,ZhouY,et al.Explainable machine learning model for predicting septic shock in critically sepsis patients based on coagulation indexes: a multicenter cohort study[J].Chin J Traumatol,2025:S1008-1275(25)00032-X.DOI: 10.1016/j.cjtee.2024.08.012.
|
| [50] |
宋大庆,李亚,孙树印.人工智能技术在脓毒症/脓毒性休克中的应用[J].实用休克杂志(中英文),2024,8(6):323-327.
|
| [51] |
KomorowskiM,CeliLA,BadawiO,et al.The artificial intelligence clinician learns optimal treatment strategies for sepsis in intensive care[J].Nat Med,2018,24(11):1716-1720.DOI: 10.1038/s41591-018-0213-5.
|
| [52] |
KalimouttouA,KennedyJN,FengJ,et al.Optimal vasopressin initiation in septic shock: the OVISS reinforcement learning study[J].JAMA,2025,333(19):1688-1698.DOI: 10.1001/jama.2025.3046.
|