| Citation: | Li YQ,Zhang TT,Zou GL,et al.Effects of mitochondrial transplantation on full-thickness skin defects in diabetic rats[J].Chin J Burns Wounds,2025,41(10):937-948.DOI: 10.3760/cma.j.cn501225-20250721-00315. |
| [1] |
XiongY, LinZ, BuP, et al. A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing[J]. Adv Mater, 2023,35(19):e2212300. DOI: 10.1002/adma.202212300.
|
| [2] |
ZhaoH, LiuY. Neutrophil extracellular traps induce fibroblast ferroptosis via IRE1α/XBP1-mediated ER stress to impair diabetic wound healing[J]. Free Radic Biol Med, 2025,236:17-27. DOI: 10.1016/j.freeradbiomed.2025.05.391.
|
| [3] |
HuangX, ZhengL, ZhouY, et al. Controllable adaptive molybdate-oligosaccharide nanoparticles regulate M2 macrophage mitochondrial function and promote angiogenesis via PI3K/HIF-1α/VEGF pathway to accelerate diabetic wound healing[J]. Adv Healthc Mater, 2024,13(3):e2302256. DOI: 10.1002/adhm.202302256.
|
| [4] |
徐旭英. 《中国糖尿病足防治指南2019》解读[J].中国临床医生杂志,2023,51(4):394-397.
|
| [5] |
WongA, OngB, LeeA, et al. Topical biological agents as adjuncts to improve wound healing in chronic diabetic wounds: a systematic review of clinical evidence and future directions[J]. Cureus, 2022,14(7):e27180. DOI: 10.7759/cureus.27180.
|
| [6] |
ChiuA, SharmaD, ZhaoF. Tissue engineering-based strategies for diabetic foot ulcer management[J]. Adv Wound Care (New Rochelle), 2023,12(3):145-167. DOI: 10.1089/wound.2021.0081.
|
| [7] |
ZhaoX, ZhangY, HuangZ, et al. Innovative therapies for diabetic foot ulcers: application and prospects of smart dressings[J]. Biomed Pharmacother, 2025,191:118498. DOI: 10.1016/j.biopha.2025.118498.
|
| [8] |
JiangG, JiangT, ChenJ, et al. Mitochondrial dysfunction and oxidative stress in diabetic wound[J]. J Biochem Mol Toxicol, 2023,37(7):e23407. DOI: 10.1002/jbt.23407.
|
| [9] |
PrabhakaranHS, HuD, HeW, et al. Mitochondrial dysfunction and mitophagy: crucial players in burn trauma and wound healing[J/OL]. Burns Trauma, 2023,11:tkad029[2025-07-21].https://pubmed.ncbi.nlm.nih.gov/37465279/. DOI: 10.1093/burnst/tkad029.
|
| [10] |
王齐, 朱冠娅, 谢挺, 等. ATP代谢及嘌呤信号受体在糖尿病创面愈合炎症反应阶段的变化[J].上海交通大学学报(医学版),2020,40(1):10-17. DOI: 10.3969/j.issn.1674-8115.2020.01.002.
|
| [11] |
ZhangZ, HuangQ, ZhaoD, et al. The impact of oxidative stress-induced mitochondrial dysfunction on diabetic microvascular complications[J]. Front Endocrinol (Lausanne), 2023,14:1112363. DOI: 10.3389/fendo.2023.1112363.
|
| [12] |
DengL, DuC, SongP, et al. The role of oxidative stress and antioxidants in diabetic wound healing[J]. Oxid Med Cell Longev, 2021,2021:8852759. DOI: 10.1155/2021/8852759.
|
| [13] |
徐一凡, 张雨建, 郑嘉溢, 等. 靶向线粒体的糖尿病干预策略及相关药物研究进展[J].药学进展,2025(3):219-227. DOI: 10.20053/j.issn1001-5094.20250009.
|
| [14] |
PantT, UcheN, JuricM, et al. Clinical relevance of lncRNA and mitochondrial targeted antioxidants as therapeutic options in regulating oxidative stress and mitochondrial function in vascular complications of diabetes[J]. Antioxidants (Basel), 2023, 12(4):898. DOI: 10.3390/antiox12040898.
|
| [15] |
Krako JakovljevicN, PavlovicK, JoticA, et al. Targeting mitochondria in diabetes[J]. Int J Mol Sci, 2021,22 (12):6642. DOI: 10.3390/ijms22126642.
|
| [16] |
McCullyJD, CowanDB, PacakCA, et al. Injection of isolated mitochondria during early reperfusion for cardioprotection[J]. Am J Physiol Heart Circ Physiol, 2009,296(1):H94-H105. DOI: 10.1152/ajpheart.00567.2008.
|
| [17] |
HayashidaK, TakegawaR, ShoaibM, et al. Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies[J]. J Transl Med, 2021,19(1):214. DOI: 10.1186/s12967-021-02878-3.
|
| [18] |
LiZ, CaoX, LiuZ, et al. Therapeutic effect of mitochondrial transplantation on burn injury[J]. Free Radic Biol Med, 2024,215:2-13. DOI: 10.1016/j.freeradbiomed.2024.02.019.
|
| [19] |
JiaoQ, XiangL, ChenY. Mitochondrial transplantation: a promising therapy for mitochondrial disorders[J]. Int J Pharm, 2024,658:124194. DOI: 10.1016/j.ijpharm.2024.124194.
|
| [20] |
LiX, GuanY, LiC, et al. Recent advances in mitochondrial transplantation to treat disease[J]. Biomater Transl, 2025,6(1):4-23. DOI: 10.12336/biomatertransl.2025.01.002.
|
| [21] |
LuW, LiX, WangZ, et al. Mesenchymal stem cell-derived extracellular vesicles accelerate diabetic wound healing by inhibiting NET-induced ferroptosis of endothelial cells[J]. Int J Biol Sci, 2024,20(9):3515-3529. DOI: 10.7150/ijbs.97150.
|
| [22] |
ZhouS, WanL, LiuX, et al. Diminished Schwann cell repair responses play a role in delayed diabetes-associated wound healing[J]. Front Physiol, 2022,13:814754. DOI: 10.3389/fphys.2022.814754.
|
| [23] |
WangW, BaiD, WuC, et al. A protocol for constructing a rat wound model of type 1 diabetes[J]. J Vis Exp, 2023(192): e64914. DOI: 10.3791/64914.
|
| [24] |
ZhaoM, WangY, LiL, et al. Mitochondrial ROS promote mitochondrial dysfunction and inflammation in ischemic acute kidney injury by disrupting TFAM-mediated mtDNA maintenance[J]. Theranostics, 2021,11(4):1845-1863. DOI: 10.7150/thno.50905.
|
| [25] |
YaoWD, ZhouJN, TangC, et al. Hydrogel microneedle patches loaded with stem cell mitochondria-enriched microvesicles boost the chronic wound healing[J]. ACS Nano, 2024,18(39):26733-26750. DOI: 10.1021/acsnano.4c06921.
|
| [26] |
McDermottK, FangM, BoultonAJM, et al. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers[J]. Diabetes Care, 2023,46(1):209-221. DOI: 10.2337/dci22-0043.
|
| [27] |
XuS, LiS, BjorklundM, et al. Mitochondrial fragmentation and ROS signaling in wound response and repair[J]. Cell Regen, 2022,11(1):38. DOI: 10.1186/s13619-022-00141-8.
|
| [28] |
ClarkMA, ShayJW. Mitochondrial transformation of mammalian cells[J]. Nature, 1982,295(5850):605-607. DOI: 10.1038/295605a0.
|
| [29] |
KingMP, AttardiG. Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA[J]. Cell, 1988,52(6):811-819. DOI: 10.1016/0092-8674(88)90423-0.
|
| [30] |
WuHC, FanX, HuCH, et al. Comparison of mitochondrial transplantation by using a stamp-type multineedle injector and platelet-rich plasma therapy for hair aging in naturally aging mice[J]. Biomed Pharmacother, 2020,130:110520. DOI: 10.1016/j.biopha.2020.110520.
|
| [31] |
CaiW, ZhangJ, YuY, et al. Mitochondrial transfer regulates cell fate through metabolic remodeling in osteoporosis[J]. Adv Sci (Weinh), 2023,10(4):e2204871. DOI: 10.1002/advs.202204871.
|
| [32] |
MoskowitzovaK, OrfanyA, LiuK, et al. Mitochondrial transplantation enhances murine lung viability and recovery after ischemia-reperfusion injury[J]. Am J Physiol Lung Cell Mol Physiol, 2020,318(1):L78-L88. DOI: 10.1152/ajplung.00221.2019.
|
| [33] |
JavaniG, BabriS, FarajdokhtF, et al. Mitochondrial transplantation improves anxiety- and depression-like behaviors in aged stress-exposed rats[J]. Mech Ageing Dev, 2022,202:111632. DOI: 10.1016/j.mad.2022.111632.
|
| [34] |
ZhaoZ, HouY, ZhouW, et al. Mitochondrial transplantation therapy inhibit carbon tetrachloride-induced liver injury through scavenging free radicals and protecting hepatocytes[J]. Bioeng Transl Med, 2021,6(2):e10209. DOI: 10.1002/btm2.10209.
|
| [35] |
YuZ, HouY, ZhouW, et al. The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma[J]. Int J Biol Sci, 2021,17(8):2021-2033. DOI: 10.7150/ijbs.59581.
|
| [36] |
ParkKH, HanSH, HongJP, et al. Topical epidermal growth factor spray for the treatment of chronic diabetic foot ulcers: a phase Ⅲ multicenter, double-blind, randomized, placebo-controlled trial[J]. Diabetes Res Clin Pract, 2018,142:335-344. DOI: 10.1016/j.diabres.2018.06.002.
|
| [37] |
ZhaoDY, SuYN, LiYH, et al. Efficacy and safety of recombinant human epidermal growth factor for diabetic foot ulcers: a systematic review and meta-analysis of randomised controlled trials[J]. Int Wound J, 2020,17(4):1062-1073. DOI: 10.1111/iwj.13377.
|
| [38] |
RibeiroFM, VolpatoH, Lazarin-BidóiaD, et al. The extended production of UV-induced reactive oxygen species in L929 fibroblasts is attenuated by posttreatment with Arrabidaea chica through scavenging mechanisms[J]. J Photochem Photobiol B, 2018,178:175-181. DOI: 10.1016/j.jphotobiol.2017.11.002.
|
| [39] |
DuH, LiS, LuJ, et al. Single-cell RNA-seq and bulk-seq identify RAB17 as a potential regulator of angiogenesis by human dermal microvascular endothelial cells in diabetic foot ulcers[J/OL]. Burns Trauma, 2023,11:tkad020[2025-07-21]. https://pubmed.ncbi.nlm.nih.gov/37605780/. DOI: 10.1093/burnst/tkad020.
|
| [40] |
ShepherdJ, SarkerP, RimmerS, et al. Hyperbranched poly(NIPAM) polymers modified with antibiotics for the reduction of bacterial burden in infected human tissue engineered skin[J]. Biomaterials, 2011,32(1):258-267. DOI: 10.1016/j.biomaterials.2010.08.084.
|
| [41] |
McCullyJD, LevitskyS, Del NidoPJ, et al. Mitochondrial transplantation for therapeutic use[J]. Clin Transl Med, 2016,5(1):16. DOI: 10.1186/s40169-016-0095-4.
|
| [42] |
ShanmughapriyaS, LangfordD, NatarajaseenivasanK. Inter and intracellular mitochondrial trafficking in health and disease[J]. Ageing Res Rev, 2020,62:101128. DOI: 10.1016/j.arr.2020.101128.
|
李玉骞.mp4
|
|