Volume 41 Issue 10
Oct.  2025
Turn off MathJax
Article Contents
Xu FJ,Li Y.Wound repair strategies of natural polysaccharide hydrogels based on microenvironmental regulation[J].Chin J Burns Wounds,2025,41(10):918-927.DOI: 10.3760/cma.j.cn501225-20250722-00316.
Citation: Xu FJ,Li Y.Wound repair strategies of natural polysaccharide hydrogels based on microenvironmental regulation[J].Chin J Burns Wounds,2025,41(10):918-927.DOI: 10.3760/cma.j.cn501225-20250722-00316.

Wound repair strategies of natural polysaccharide hydrogels based on microenvironmental regulation

doi: 10.3760/cma.j.cn501225-20250722-00316
Funds:

General Program of National Natural Science Foundation of China 52273115

Innovatie Research Group Project of National Natural Science Foundation of China 52221006

More Information
  • The efficiency of wound repair and the function of regenerated tissue are governed by the precise regulation of the wound microenvironment. At the physiological level, wounds undergo intricate cascades of signaling events, including persistent amplification of inflammation, remodeling of cytokine networks, disruption of redox homeostasis, and succession of microbial communities. The spatiotemporal dynamics of these signals directly determine the course and quality of wound repair. At the physical level, impaired exudate management, compromised microbial barriers, stress concentration at wound edges, and local thermal imbalance further exacerbate tissue injury and delay wound repair. Conventional wound therapies often fail to address the individualized features and dynamic pathological changes of wounds, underscoring the urgent need for a new generation of intelligent dressings capable of real-time sensing pathological signals and adaptive modulation of the wound microenvironment. Natural polysaccharides, characterised by their structural diversity and modifiability, provide a versatile design space for constructing multifunctional hydrogels. The integration of these platforms with exogenous stimulus-responsive platforms further expands the functional potential of wound dressings. This article systematically reviews the latest advances in precise regulation of wound microenvironment by natural polysaccharide hydrogels, focusing on the intelligent response mechanisms to physiological microenvironment and the functional design strategies for physical microenvironment. It aims to provide theoretical guidance for the rational design and clinical application of natural polysaccharide hydrogels.

     

  • loading
  • [1]
    PeñaOA,MartinP.Cellular and molecular mechanisms of skin wound healing[J].Nat Rev Mol Cell Biol,2024,25(8):599-616.DOI: 10.1038/s41580-024-00715-1.
    [2]
    MedzhitovR.The spectrum of inflammatory responses[J].Science,2021,374(6571):1070-1075.DOI: 10.1126/science.abi5200.
    [3]
    SunBK,SiprashviliZ,KhavariPA.Advances in skin grafting and treatment of cutaneous wounds[J].Science,2014,346(6212):941-945.DOI: 10.1126/science.1253836.
    [4]
    ChengY,WangY,WangY,et al.Microenvironment-feedback regulated hydrogels as living wound healing materials[J].Nat Commun,2025,16(1):6050.DOI: 10.1038/s41467-025-60858-3.
    [5]
    WangJ, HeJ, ZhouR,et al.Accelerated diabetic wound healing via electrical and oxidative microenvironment regulation by MXene nanosheet-based hydrogel dressings[J]. ACS Appl Nano Mater, 2025, 11(8): 5466-5480. DOI: 10.1021/acsanm.4c07182.
    [6]
    LiG,LaiZ,ShanA.Advances of antimicrobial peptide-based biomaterials for the treatment of bacterial infections[J].Adv Sci (Weinh),2023,10(11):e2206602.DOI: 10.1002/advs.202206602.
    [7]
    石明生, 梁晓炀, 张瑞, 等. 透明质酸生物胶的性能及其对小鼠烧伤感染性创面愈合的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 949-957. DOI: 10.3760/cma.j.cn501225-20250422-00186.
    [8]
    TheocharidisG,YukH,RohH,et al.A strain-programmed patch for the healing of diabetic wounds[J].Nat Biomed Eng,2022,6(10):1118-1133.DOI: 10.1038/s41551-022-00905-2.
    [9]
    MaX,ZhouY,XinM,et al.A Mg battery-integrated bioelectronic patch provides efficient electrochemical stimulations for wound healing[J].Adv Mater,2024,36(48):e2410205.DOI: 10.1002/adma.202410205.
    [10]
    ChenQ,LiS,LiK,et al.A skin stress shielding platform based on body temperature-induced shrinking of hydrogel for promoting scar-less wound healing[J].Adv Sci (Weinh),2024,11(41):e2306018.DOI: 10.1002/advs.202306018.
    [11]
    BoatengJS,MatthewsKH,StevensHN,et al.Wound healing dressings and drug delivery systems: a review[J].J Pharm Sci,2008,97(8):2892-2923.DOI: 10.1002/jps.21210.
    [12]
    KusKJB, RuizES.Wound dressings – a practical review[J].Current Dermatology Reports, 2020, 9(4):298-308.DOI: 10.1007/s13671-020-00319-w.
    [13]
    TooleBP.Hyaluronan: from extracellular glue to pericellular cue[J].Nat Rev Cancer,2004,4(7):528-539.DOI: 10.1038/nrc1391.
    [14]
    DashM, ChielliniF, OttenbriteRM, et al. Chitosan—a versatile semi-synthetic polymer in biomedical applications[J].Prog Polym Sci, 2011, 36(8):981-1014. DOI: 10.1016/j.progpolymsci.2011.02.001.
    [15]
    XingM,CaoQ,WangY,et al.Advances in research on the bioactivity of alginate oligosaccharides[J].Mar Drugs,2020,18(3):144.DOI: 10.3390/md18030144.
    [16]
    YangQ,PengJ,XiaoH,et al.Polysaccharide hydrogels: functionalization, construction and served as scaffold for tissue engineering[J].Carbohydr Polym,2022,278:118952.DOI: 10.1016/j.carbpol.2021.118952.
    [17]
    HivechiA,JoghataeiMT,BahramiSH,et al.Oxidized carboxymethyl cellulose/gelatin in situ gelling hydrogel for accelerated diabetic wound healing: synthesis, characterization, and in vivo investigations[J].Int J Biol Macromol,2023,242(Pt 3):125127.DOI: 10.1016/j.ijbiomac.2023.125127.
    [18]
    Zia-Ud-Din,XiongH,FeiP.Physical and chemical modification of starches: a review[J].Crit Rev Food Sci Nutr,2017,57(12):2691-2705.DOI: 10.1080/10408398.2015.1087379.
    [19]
    GuoX,WangY,QinY,et al.Structures, properties and application of alginic acid: a review[J].Int J Biol Macromol,2020,162:618-628.DOI: 10.1016/j.ijbiomac.2020.06.180.
    [20]
    IaconisiGN,LunettiP,GalloN,et al.Hyaluronic acid: a powerful biomolecule with wide-ranging applications-a comprehensive review[J].Int J Mol Sci,2023,24(12):10296.DOI: 10.3390/ijms241210296.
    [21]
    YangX,WangQ,ZhangA,et al.Strategies for sustained release of heparin: a review[J].Carbohydr Polym,2022,294:119793.DOI: 10.1016/j.carbpol.2022.119793.
    [22]
    PeersS,MontembaultA,LadavièreC.Chitosan hydrogels for sustained drug delivery[J].J Control Release,2020,326:150-163.DOI: 10.1016/j.jconrel.2020.06.012.
    [23]
    UnnithanAR,BarakatNA,PichiahPB,et al.Wound-dressing materials with antibacterial activity from electrospun polyurethane-dextran nanofiber mats containing ciprofloxacin HCl[J].Carbohydr Polym,2012,90(4):1786-1793.DOI: 10.1016/j.carbpol.2012.07.071.
    [24]
    LiYL,ZhuL,LiuZ,et al.Reversibly stabilized multifunctional dextran nanoparticles efficiently deliver doxorubicin into the nuclei of cancer cells[J].Angew Chem Int Ed Engl,2009,48(52):9914-9918.DOI: 10.1002/anie.200904260.
    [25]
    AnsariM,DarvishiA.A review of the current state of natural biomaterials in wound healing applications[J].Front Bioeng Biotechnol,2024,12:1309541.DOI: 10.3389/fbioe.2024.1309541.
    [26]
    ZhangF,ZhangH,WangS,et al.A dynamically phase-adaptive regulating hydrogel promotes ultrafast anti-fibrotic wound healing[J].Nat Commun,2025,16(1):3738.DOI: 10.1038/s41467-025-58987-w.
    [27]
    GuoB,DongR,LiangY,et al.Haemostatic materials for wound healing applications[J].Nat Rev Chem,2021,5(11):773-791.DOI: 10.1038/s41570-021-00323-z.
    [28]
    EkeG,MangirN,HasirciN,et al.Development of a UV crosslinked biodegradable hydrogel containing adipose derived stem cells to promote vascularization for skin wounds and tissue engineering[J].Biomaterials,2017,129:188-198.DOI: 10.1016/j.biomaterials.2017.03.021.
    [29]
    MaY,MorozovaSM,KumachevaE.From nature-sourced polysaccharide particles to advanced functional materials[J].Adv Mater,2024,36(23):e2312707.DOI: 10.1002/adma.202312707.
    [30]
    HuW,WangZ,XiaoY,et al.Advances in crosslinking strategies of biomedical hydrogels[J].Biomater Sci,2019,7(3):843-855.DOI: 10.1039/c8bm01246f.
    [31]
    SunA, HeX, JiX, et al. Current research progress of photopolymerized hydrogels in tissue engineering [J]. Chin Chem Lett, 2021, 32(7): 2117-2126. DOI: 10.1016/j.cclet.2021.01.048.
    [32]
    PatenaudeM,SmeetsNM,HoareT.Designing injectable, covalently cross-linked hydrogels for biomedical applications[J].Macromol Rapid Commun,2014,35(6):598-617.DOI: 10.1002/marc.201300818.
    [33]
    NonoyamaT,GongJP.Tough double network hydrogel and its biomedical applications[J].Annu Rev Chem Biomol Eng,2021,12:393-410.DOI: 10.1146/annurev-chembioeng-101220-080338.
    [34]
    ZhangW, ChenS, JiangW, et al.Double-network hydrogels for biomaterials: structure-property relationships and drug delivery[J].European Polymer Journal, 2023, 185:111807.DOI: 10.1016/j.eurpolymj.2022.111807.
    [35]
    孔玥, 田丰, 刘清华, 等. 甲基丙烯酸酐化明胶水凝胶的孔隙率与杨氏模量对小鼠骨髓间充质干细胞生物学行为的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 958-967. DOI: 10.3760/cma.j.cn501225-20250630-00286.
    [36]
    ZhuH, WangC, YangY, et al.High-strength mechanically gradient hydrogels via physical crosslinking for tendon-mimetic tissue repair[J].NPJ Flexible Electronics, 2025, 9(1):53. DOI: 10.1038/s41528-025-00430-7.
    [37]
    LinCH,SrioudomJR,SunW,et al.The use of hydrogel microspheres as cell and drug delivery carriers for bone, cartilage, and soft tissue regeneration[J].Biomater Transl,2024,5(3):236-256.DOI: 10.12336/biomatertransl.2024.03.003.
    [38]
    ChiH,QiuY,YeX,et al.Preparation strategy of hydrogel microsphere and its application in skin repair[J].Front Bioeng Biotechnol,2023,11:1239183.DOI: 10.3389/fbioe.2023.1239183.
    [39]
    WangY.Programmable hydrogels[J].Biomaterials,2018,178:663-680.DOI: 10.1016/j.biomaterials.2018.03.008.
    [40]
    ZhangY,WangZL,DengZP,et al.An extracellular matrix-inspired self-healing composite hydrogel for enhanced platelet-rich plasma-mediated chronic diabetic wound treatment[J].Carbohydr Polym,2023,315:120973.DOI: 10.1016/j.carbpol.2023.120973.
    [41]
    GongY,WangP,CaoR,et al.Exudate absorbing and antimicrobial hydrogel integrated with multifunctional curcumin-loaded magnesium polyphenol network for facilitating burn wound healing[J].ACS Nano,2023,17(22):22355-22370.DOI: 10.1021/acsnano.3c04556.
    [42]
    OmidianH,WilsonRL,Dey ChowdhuryS.Injectable biomimetic gels for biomedical applications[J].Biomimetics (Basel),2024,9(7):418.DOI: 10.3390/biomimetics9070418.
    [43]
    FanF,SahaS,Hanjaya-PutraD.Biomimetic hydrogels to promote wound healing[J].Front Bioeng Biotechnol,2021,9:718377.DOI: 10.3389/fbioe.2021.718377.
    [44]
    ZhangR,LiangX,WangJ,et al.Supramolecular hydrogel based on pseudopolyrotaxane aggregation for bacterial microenvironment-responsive antibiotic delivery[J].Chem Asian J,2022,17(17):e202200574.DOI: 10.1002/asia.202200574.
    [45]
    LohmannN,SchirmerL,AtallahP,et al.Glycosaminoglycan-based hydrogels capture inflammatory chemokines and rescue defective wound healing in mice[J].Sci Transl Med,2017,9(386):eaai9044. DOI: 10.1126/scitranslmed.aai9044.
    [46]
    ZhangX,FengJ,FengW,et al.Glycosaminoglycan-based hydrogel delivery system regulates the wound microenvironment to rescue chronic wound healing[J].ACS Appl Mater Interfaces,2022,14(28):31737-31750.DOI: 10.1021/acsami.2c08593.
    [47]
    Cano SanchezM,LancelS,BoulangerE,et al.Targeting oxidative stress and mitochondrial dysfunction in the treatment of impaired wound healing: a systematic review[J].Antioxidants (Basel),2018,7(8):98.DOI: 10.3390/antiox7080098.
    [48]
    李玉骞, 张婷婷, 邹桂连, 等. 线粒体移植对糖尿病大鼠全层皮肤缺损的影响[J]. 中华烧伤与创面修复杂志, 2025, 41(10): 937-948. DOI: 10.3760/cma.j.cn501225-20250721-00315.
    [49]
    ZhaoW,ZhangX,ZhangR,et al.Self-assembled herbal medicine encapsulated by an oxidation-sensitive supramolecular hydrogel for chronic wound treatment[J].ACS Appl Mater Interfaces,2020,12(51):56898-56907.DOI: 10.1021/acsami.0c19492.
    [50]
    LiangX,ChenH,ZhangR,et al.Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing[J].Biomaterials,2025,317:123076.DOI: 10.1016/j.biomaterials.2024.123076.
    [51]
    ZhaoW,LiY,ZhangX,et al.Photo-responsive supramolecular hyaluronic acid hydrogels for accelerated wound healing[J].J Control Release,2020,323:24-35.DOI: 10.1016/j.jconrel.2020.04.014.
    [52]
    ZhangX, YaoD, ZhaoW, et al. Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value [J]. Adv Funct Mater, 2021, 31(8): 2009258. DOI: 10.1002/adfm.202009258.
    [53]
    ChenK,LiuY,LiuX,et al.Hyaluronic acid-modified and verteporfin-loaded polylactic acid nanogels promote scarless wound healing by accelerating wound re-epithelialization and controlling scar formation[J].J Nanobiotechnology,2023,21(1):241.DOI: 10.1186/s12951-023-02014-x.
    [54]
    XiongY,LinZ,BuP,et al.A whole-course-repair system based on neurogenesis-angiogenesis crosstalk and macrophage reprogramming promotes diabetic wound healing[J].Adv Mater,2023,35(19):e2212300.DOI: 10.1002/adma.202212300.
    [55]
    WangG,SwerenE,LiuH,et al.Bacteria induce skin regeneration via IL-1β signaling[J].Cell Host Microbe,2021,29(5):777-791.e6.DOI: 10.1016/j.chom.2021.03.003.
    [56]
    SunX,XiangJ,ChenR,et al.Sweat gland organoids originating from reprogrammed epidermal keratinocytes functionally recapitulated damaged skin[J].Adv Sci (Weinh),2021,8(22):e2103079.DOI: 10.1002/advs.202103079.
    [57]
    UberoiA,McCready-VangiA,GriceEA.The wound microbiota: microbial mechanisms of impaired wound healing and infection[J].Nat Rev Microbiol,2024,22(8):507-521.DOI: 10.1038/s41579-024-01035-z.
    [58]
    TottoliEM,DoratiR,GentaI,et al.Skin wound healing process and new emerging technologies for skin wound care and regeneration[J].Pharmaceutics,2020,12(8):735.DOI: 10.3390/pharmaceutics12080735.
    [59]
    EvansND,OreffoRO,HealyE,et al.Epithelial mechanobiology, skin wound healing, and the stem cell niche[J].J Mech Behav Biomed Mater,2013,28:397-409.DOI: 10.1016/j.jmbbm.2013.04.023.
    [60]
    ChenH,ZhaoZ,ZhangR,et al.Adaptable hydrogel with strong adhesion of wet tissue for long-term protection of periodontitis wound[J].Adv Mater,2025,37(1):e2413373.DOI: 10.1002/adma.202413373.
    [61]
    ChenH,ZhangR,ZhangG,et al.Naturally inspired tree-ring structured dressing provides sustained wound tightening and accelerates closure[J].Adv Mater,2025,37(3):e2410845.DOI: 10.1002/adma.202410845.
    [62]
    MalekiA,HeJ,BochaniS,et al.Multifunctional photoactive hydrogels for wound healing acceleration[J].ACS Nano,2021,15(12):18895-18930. DOI: 10.1021/acsnano.1c08334.
    [63]
    GaoY, DuH, XieZ, et al.Self-adhesive photothermal hydrogel films for solar-light assisted wound healing[J]. J Mater Chem B, 2019, 23(7): 3644-3651. DOI: 10.1039/C9TB00481E.
    [64]
    ZhangR, FengJ, ChenH, et al. Hybrid hydrogel with photothermal stimulation elicits immunomodulation‐mediated wound healing[J]. Adv Funct Mater, 2025, 35: 2419170. DOI: 10.1002/adfm.202419170.
    [65]
    PowerG,MooreZ,O'ConnorT.Measurement of pH, exudate composition and temperature in wound healing: a systematic review[J].J Wound Care,2017,26(7):381-397.DOI: 10.12968/jowc.2017.26.7.381.
    [66]
    SimP,StrudwickXL,SongY,et al.Influence of acidic pH on wound healing in vivo: a novel perspective for wound treatment[J].Int J Mol Sci,2022,23(21):13655.DOI: 10.3390/ijms232113655.
    [67]
    ChenS,LuoY,HeY,et al.In-situ-sprayed therapeutic hydrogel for oxygen-actuated Janus regulation of postsurgical tumor recurrence/metastasis and wound healing[J].Nat Commun,2024,15(1):814.DOI: 10.1038/s41467-024-45072-x.
    [68]
    LuoR,DaiJ,ZhangJ,et al.Accelerated skin wound healing by electrical stimulation[J].Adv Healthc Mater,2021,10(16):e2100557.DOI: 10.1002/adhm.202100557.
    [69]
    AudittoS, ContardiM, GnocchiC, et al. Harnessing natural compounds and external stimuli for advanced wound healing: a review of combination therapy strategies[J]. J Drug Deliv Sci Technol, 2024, 101: 106172. DOI: 10.1016/j.jddst.2024.106172.
    [70]
    WuSJ,ZhaoX.Bioadhesive technology platforms[J].Chem Rev,2023,123(24):14084-14118.DOI: 10.1021/acs.chemrev.3c00380.
    [71]
    SrivastavaGK,Martinez-RodriguezS,MdFadilah NI,et al.Progress in wound-healing products based on natural compounds, stem cells, and microRNA-based biopolymers in the European, USA, and Asian markets: opportunities, barriers, and regulatory issues[J].Polymers (Basel),2024,16(9):1280.DOI: 10.3390/polym16091280.
    [72]
    de AmorimJDP,da Silva JuniorCJG,de MedeirosADM,et al.Bacterial cellulose as a versatile biomaterial for wound dressing application[J].Molecules,2022,27(17):5580.DOI: 10.3390/molecules27175580.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (97) PDF downloads(14) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return