| Citation: | Su Sen,Liu Xiaoyan,Zhang Ting,et al.Study on temporal changes in energy and material metabolism in burned mice[J].Chin J Burns Wounds,2025,41(12):1-11.DOI: 10.3760/cma.j.cn501225-20250807-00349. |
| [1] |
彭曦. 重症烧伤患者的代谢分期及营养治疗策略[J].中华烧伤杂志,2021,37(9):805-810.DOI: 10.3760/cma.j.cn501120-20210802-00264.
|
| [2] |
ClarkA, ImranJ, MadniT, et al. Nutrition and metabolism in burn patients[J/OL]. Burns Trauma, 2017,5:11[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/28428966/. DOI: 10.1186/s41038-017-0076-x.
|
| [3] |
PorterC, TompkinsRG, FinnertyCC, et al. The metabolic stress response to burn trauma: current understanding and therapies[J]. Lancet, 2016,388(10052):1417-1426. DOI: 10.1016/S0140-6736(16)31469-6.
|
| [4] |
NunezJH, ClarkAT. Burn patient metabolism and nutrition[J]. Phys Med Rehabil Clin N Am, 2023,34(4):717-731. DOI: 10.1016/j.pmr.2023.06.001.
|
| [5] |
JeschkeMG, van BaarME, ChoudhryMA, et al. Burn injury[J]. Nat Rev Dis Primers, 2020, 6(1): 11.DOI: 10.1038/s41572-020-0145-5.
|
| [6] |
WolfeRR, HerndonDN, JahoorF, et al. Effect of severe burn injury on substrate cycling by glucose and fatty acids[J]. N Engl J Med, 1987,317(7):403-408. DOI: 10.1056/NEJM198708133170702.
|
| [7] |
彭曦. 烧伤临床营养新视角[J]. 中华烧伤杂志,2019,35(5):321-325.DOI: 10.3760/cma.j.issn.1009-2587.2019.05.001.
|
| [8] |
ShieldsBA, VanFossonCA, PruskowskiKA, et al. High-carbohydrate vs high-fat nutrition for burn patients[J]. Nutr Clin Pract, 2019,34(5):688-694. DOI: 10.1002/ncp.10396.
|
| [9] |
BadoiuSC, MiricescuD, Stanescu-SpinuI, et al. Glucose metabolism in burns-what happens?[J]. Int J Mol Sci, 2021,22(10):5159. DOI: 10.3390/ijms22105159.
|
| [10] |
范仕郡, 吴丹, 夏林, 等. 小鼠烧伤创面脓毒症模型的建立与评价[J].中国比较医学杂志,2022,32(6):7-13. DOI: 10.3969/j.issn.1671-7856.2022.06.002.
|
| [11] |
FraynKN. Calculation of substrate oxidation rates in vivo from gaseous exchange[J]. J Appl Physiol Respir Environ Exerc Physiol, 1983,55(2):628-634. DOI: 10.1152/jappl.1983.55.2.628.
|
| [12] |
YangY, SuS, ZhangY, et al. Effects of different ratios of carbohydrate-fat in enteral nutrition on metabolic pattern and organ damage in burned rats[J]. Nutrients, 2022,14(17):3653. DOI: 10.3390/nu14173653.
|
| [13] |
KnuthCM, BarayanD, LeeJH, et al. Subcutaneous white adipose tissue independently regulates burn-induced hypermetabolism via immune-adipose crosstalk[J]. Cell Rep, 2024,43(1):113584. DOI: 10.1016/j.celrep.2023.113584.
|
| [14] |
BhattaraiN, RontoyanniV G, RossE, et al. Brown adipose tissue recruitment in a rodent model of severe burns[J]. Burns, 2020, 46(7): 1653-1659. DOI: 10.1016/j.burns.2020.04.034.
|
| [15] |
BieerkehazhiS, AbdullahiA, KhalafF, et al. β-Adrenergic blockade attenuates adverse adipose tissue responses after burn[J]. J Mol Med (Berl), 2024,102(10):1245-1254. DOI: 10.1007/s00109-024-02478-w.
|
| [16] |
MacêdoAPA, MuñozVR, CintraDE, et al. 12,13-diHOME as a new therapeutic target for metabolic diseases[J]. Life Sci, 2022,290:120229. DOI: 10.1016/j.lfs.2021.120229.
|
| [17] |
LynesMD, LeiriaLO, LundhM, et al. The cold-induced lipokine 12,13-diHOME promotes fatty acid transport into brown adipose tissue[J]. Nat Med, 2017, 23(5): 631-637. DOI: 10.1038/nm.4297.
|
| [18] |
StanfordKI, LynesMD, TakahashiH, et al. 12,13-diHOME: an exercise-induced lipokine that increases skeletal muscle fatty acid uptake[J]. Cell Metab, 2018,27(5):1111-1120.e3. DOI: 10.1016/j.cmet.2018.03.020.
|
| [19] |
KierathE, RyanM, HolmesE, et al. Plasma lipidomics reveal systemic changes persistent throughout early life following a childhood burn injury[J/OL]. Burns Trauma, 2023,11:tkad044[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/38074192/. DOI: 10.1093/burnst/tkad044.
|
| [20] |
RyanMJ, RabyE, MasudaR, et al. Clinical prediction of wound re-epithelisation outcomes in non-severe burn injury using the plasma lipidome[J]. Burns, 2025,51(1):107282. DOI: 10.1016/j.burns.2024.10.003.
|
| [21] |
ThorellA, NygrenJ, LjungqvistO. Insulin resistance: a marker of surgical stress[J]. Curr Opin Clin Nutr Metab Care, 1999,2(1):69-78. DOI: 10.1097/00075197-199901000-00012.
|
| [22] |
OgunbilejeJO, PorterC, HerndonDN, et al. Hypermetabolism and hypercatabolism of skeletal muscle accompany mitochondrial stress following severe burn trauma[J]. Am J Physiol Endocrinol Metab, 2016,311(2):E436-448. DOI: 10.1152/ajpendo.00535.2015.
|
| [23] |
YuYM, TompkinsRG, RyanCM, et al. The metabolic basis of the increase of the increase in energy expenditure in severely burned patients[J]. JPEN J Parenter Enteral Nutr, 1999,23(3):160-168. DOI: 10.1177/0148607199023003160.
|
| [24] |
HartDW, WolfSE, MlcakR, et al. Persistence of muscle catabolism after severe burn[J]. Surgery, 2000,128(2):312-319. DOI: 10.1067/msy.2000.108059.
|
| [25] |
YangG, ZhangY, WuD, et al. 1H-NMR metabolomics identifies significant changes in hypermetabolism after glutamine administration in burned rats[J]. Am J Transl Res, 2019,11(12):7286-7299.
|
| [26] |
SuS, ZhangY, WuD, et al. 1H-nuclear magnetic resonance analysis reveals dynamic changes in the metabolic profile of patients with severe burns[J/OL]. Burns Trauma, 2024,12:tkae007[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/38756185/. DOI: 10.1093/burnst/tkae007.
|
| [27] |
胡秀红, 任文波, 黄晶. 细胞因子与氨基酸代谢关系的研究进展[J].中国免疫学杂志,2022,38(13):1661-1666. DOI: 10.3969/j.issn.1000-484X.2022.13.023.
|
| [28] |
Arribas-LópezE, ZandN, OjoO, et al. The effect of amino acids on wound healing: a systematic review and meta-analysis on arginine and glutamine[J]. Nutrients,2021,13(8):2498. DOI: 10.3390/nu13082498.
|
| [29] |
PorterC, HurrenNM, HerndonDN, et al. Whole body and skeletal muscle protein turnover in recovery from burns[J]. Int J Burns Trauma, 2013,3(1):9-17.
|
| [30] |
KnuthCM, AugerC, JeschkeMG. Burn-induced hypermetabolism and skeletal muscle dysfunction[J]. Am J Physiol Cell Physiol, 2021,321(1):C58-C71. DOI: 10.1152/ajpcell.00106.2021.
|
| [31] |
吴国豪. 重视外科病人骨骼肌丢失的防治[J]. 中华消化外科杂志, 2021, 20(11): 1158-1161.DOI: 10.3760/cma.j.cn115610-20210804-00379.
|
| [32] |
PradoRI, TanitaMT, CardosoLTQ, et al. Ultrasound-based evaluation of loss of lean mass in patients with burns: a prospective longitudinal study[J]. Burns, 2023,49(8):1900-1906. DOI: 10.1016/j.burns.2023.04.004.
|
| [33] |
苏青, 臧丽. 胰岛素抵抗的历史、机制和管理[J]. 中华糖尿病杂志, 2023, 15(1):6-13. DOI: 10.3760/cma.j.cn115791-20220905-00447.
|
| [34] |
OsborneT, WallB, EdgarDW, et al. Current understanding of the chronic stress response to burn injury from human studies[J/OL]. Burns Trauma, 2023,11:tkad007[2025-08-07]. https://pubmed.ncbi.nlm.nih.gov/36926636/.DOI: 10.1093/burnst/tkad007.
|
| [35] |
ThiessenSE, DerdeS, DereseI, et al. Role of glucagon in catabolism and muscle wasting of critical illness and modulation by nutrition[J]. Am J Respir Crit Care Med, 2017,196(9):1131-1143. DOI: 10.1164/rccm.201702-0354OC.
|
| [36] |
中华医学会肠外肠内营养学分会护理学组. 肠外营养安全输注专家共识[J]. 中华护理杂志,2022,57(12):1421-1426. DOI: 10.376/j.issn.0254-1769.2022.12.002.
|
| [37] |
BarazzoniR, DeutzNEP, BioloG, et al. Carbohydrates and insulin resistance in clinical nutrition: recommendations from the ESPEN expert group[J]. Clin Nutr, 2017,36(2):355-363. DOI: 10.1016/j.clnu.2016.09.010.
|
| [38] |
SmedbergM, HellebergJ, NorbergÅ, et al. Plasma glutamine status at intensive care unit admission: an independent risk factor for mortality in critical illness[J]. Crit Care, 2021,25(1):240. DOI: 10.1186/s13054-021-03640-3.
|
| [39] |
彭曦. 重视谷氨酰胺在烧伤临床的规范应用[J].肠外与肠内营养,2021,28(1):1-4. DOI: 10.16151/j.1007-810x.2021.01.001.
|
| [40] |
TangG, PiF, QiuY, et al. Postoperative parenteral glutamine supplementation improves the short-term outcomes in patients undergoing colorectal cancer surgery: a propensity score matching study[J]. Front Nutr, 2023,10:1040893. DOI: 10.3389/fnut.2023.1040893.
|