Liu XX,Liu DW.Research advances on the effects of RNA N6-methyladenosine modification in the relevant pathophysiological processes of wound repair[J].Chin J Burns Wounds,2022,38(10):989-993.DOI: 10.3760/cma.j.cn501120-20210804-00267.
Citation: Ding N,Fu XX,Wu HM,et al.Research progress of the application of methacrylic anhydride gelatin hydrogel in wound repair[J].Chin J Burns Wounds,2022,38(11):1096-1100.DOI: 10.3760/cma.j.cn501225-20220308-00056.

Research progress of the application of methacrylic anhydride gelatin hydrogel in wound repair

doi: 10.3760/cma.j.cn501225-20220308-00056
Funds:

Civil-Military Integration Achievement Incubation Special Fund of Naval Medical University & University of Shanghai for Science and Technology 2020-RZ04

More Information
  • Wound repair is a common clinical problem, which seriously affects the quality of life of patients and also brings a heavy burden to the society. Hydrogel-based multifunctional dressing has shown strong potential in the treatment of acute and chronic wounds. In addition to its good histocompatibility, cell adhesion, and biodegradability, methacrylic anhydride gelatin (GelMA) hydrogel has also attracted much attention due to its low cost, mild reaction conditions, adjustable physicochemical properties, and wide clinical applications. In this paper, the characteristics of GelMA hydrogel and its research progress in wound repair are introduced, and the future development of multifunctional GelMA hydrogel dressing for wound treatment is prospected.

     

  • 创面是一种以皮肤缺损或功能受限为主要特征的常见外科病症,通常由外科手术、热力、电流、化学物质、低温以及机体内在因素如局部血液供应障碍等引起。较大的皮肤缺损不仅影响美观,还会引起功能障碍,影响患者的身心健康和生活质量,给患者家庭及社会带来沉重的经济负担。因此,从分子层面进一步了解创面修复病理过程的发生机制,有望为创面修复的治疗找到新的靶点。RNA N6-甲基腺嘌呤(m6A)甲基化为近年来转录后修饰机制研究的热门议题。本文综述m6A的特征、相关调控蛋白以及m6A在皮肤形态发生、创面修复、炎症反应、血管生成和纤维化中的作用,阐述了m6A在创面修复相关病理生理过程中作用的研究进展,以期为创面修复的临床治疗提供新的理论依据。

    m6A修饰是指RNA腺嘌呤碱基上的第6位氮原子发生甲基化,该修饰在真核生物以及一些病毒中高度保守1。mRNA m6A于20世纪70年代被发现,m6A修饰作为真核细胞mRNA中最普遍的化学修饰,在整个转录组中以0.15%~0.6%的频率出现在成千上万个甲基化位点上2。2012年,有2个科研团队通过m6A免疫沉淀联合RNA甲基化免疫沉淀测序(MeRIP-seq)检测了m6A的转录修饰位点,观察到在人和小鼠的7 000多个mRNA和长链非编码RNA中存在超过12 000个N6甲基化峰,这些m6A位点都有一个共同的“RRACH(R可为A或G,H可为A、U或C)”序列,且多富集于3'非编码区、长外显子区或接近终止密码子的区域3, 4

    m6A作为动态可逆的内部RNA修饰,其添加和去除分别由甲基转移酶和去甲基化酶调控。m6A甲基转移酶,亦称“编码器(writer)”,通常组成蛋白复合体来催化甲基化形成。该复合体包括由甲基转移酶样3(METTL3)和METTL14组成、分子量约200×103的甲基转移酶A和分子量约800×103的甲基转移酶B。其中,甲基转移酶A部分主要起催化作用,尤以METTL3为主要催化蛋白,而甲基转移酶B则被认为可能具有细胞定位、RNA靶向和招募甲基化所需的辅助蛋白等作用5。目前已知的m6A甲基转移酶包括Wilms肿瘤1结合蛋白(WTAP)、Vir样m6A相关甲基转移酶、具有CCCH结构锌指蛋白13、RNA结合基序蛋白15/15B、METTL16等6。m6A去甲基化酶,即“消码器(eraser)”,目前已知包括肥胖相关蛋白(FTO)和烷基化蛋白AlkB同源物5(ALKBH5)。FTO与ALKBH5都是二价铁和α-酮戊二酸依赖的双加氧酶AlkB家族成员,以2-氧戊二酸和氧分子为底物催化目标甲基发生羟基化形成羟甲基。然而与氮原子相连的羟甲基并不稳定,因而从氮原子上脱去完成m6A的去甲基化5。除m6A甲基转移酶和m6A去甲基化酶外,还有一类蛋白——m6A结合蛋白,也称“读码器(reader)”,负责识别m6A并调节甲基化RNA的剪切、出核、稳定、降解和翻译等过程7。目前已知的m6A结合蛋白包括YTH结构域家族1/2/3(YTHDF1/2/3)、含有YTH结构域1/2(YTHDC1/2)、核不均一核糖核酸蛋白家族、胰岛素样生长因子2 mRNA结合蛋白1/2/3(IGF2BP1/2/3)等6。m6A介导的RNA调控机制见图1。近年来,m6A甲基化已成为基因表达程序研究中的关键转录后调节因子,研究显示它可以通过改变RNA的代谢,参与生长发育中的细胞分化、调节生殖细胞的成熟和生育能力、影响神经活动、参与免疫,还与肿瘤和心脏疾病相关联5

    1  m6A介导的RNA调控机制示意图
    注:METTL为甲基转移酶样,WTAP为Wilms肿瘤1结合蛋白,KIAAI429为Vir样N6-甲基腺嘌呤(m6A)相关甲基转移酶,ZC3H13为具有CCCH结构锌指蛋白13,RBM15/15B为RNA结合基序蛋白15/15B,ALKBH5为烷基化蛋白AlkB同源物5,FTO为肥胖相关蛋白,HNRNP为核不均一核糖核酸蛋白,YTHDC1为含有YTH结构域1,YTHDF为YTH结构域家族,IGF2BP为胰岛素样生长因子2 mRNA结合蛋白

    皮肤的形态发生机制是研究创面修复的生理学基础,对于研究创面修复有着重要作用。2020年,Xi等8首次检测了小鼠皮肤上皮祖细胞mRNA中的m6A修饰,证明了m6A在小鼠皮肤胚胎发育中的功能和生理重要性。胚胎发育过程中,皮肤上皮从1层多能上皮祖细胞分化发育成3种截然不同的组织:表皮、毛囊和皮脂腺。Wnt信号通路作为其中的重要信号通路,其信号水平在表皮发育、毛囊形态发生和再生中起关键作用,尤其与皮肤发育过程中的毛囊形成和成熟有关9。研究人员通过m6A单碱基分辨率交联共沉淀技术结合体内核糖体图谱分析(ribosomal profiling)检测小鼠皮肤上皮祖细胞,观察到编码序列上的m6A修饰与翻译增强相关;进一步通过基因集富集分析了解到,这些翻译增强的基因分布在一些形态发生的关键信号通路如Wnt信号通路中,因而认为m6A高度修饰的皮肤转录本可能与促进毛囊的形态发生有关8。随后,该研究团队在条件性敲除METTL3小鼠中证实,m6A的丢失导致毛囊的形态发生明显缺陷。接着,利用单细胞转录组学和生物信息学技术对条件性敲除METTL3小鼠胚胎皮肤的分析显示,先前富集的信号通路和经典翻译通路中的RNA在m6A丢失后都出现明显的下调。其中Wnt信号通路中的mRNA作为敲除前m6A修饰最多和翻译效率最高的基因,在m6A丢失后的早期下调显著;而许多参与编码RNA甲基化、RNA加工和RNA代谢因子的mRNA甲基化上调。因此,该研究团队认为m6A在增强关键形态发生调节因子的翻译的同时,也破坏了哨兵mRNA的稳定性;反之,当m6A水平下降时,哨兵mRNA则准备激活救援途径,表明m6A参与皮肤形态形成的动态调控8

    RNA m6A甲基化的下调会影响皮肤创面的修复。研究人员在条件性敲除甲基转移酶METTL14的小鼠皮肤损伤模型中观察到,与野生型小鼠皮肤相比,m6A水平下调的小鼠在皮肤损伤修复方面表现出明显的延迟,创面边缘皮肤切片的组织学染色结果显示创伤后发生细胞增殖和迁移的高增生上皮区域明显减少10。这表明METTL14在机体的皮肤创面愈合中起重要作用,且可能通过抑制表皮细胞的增殖延迟创面修复。随后,该研究团队对条件性敲除METTL14的小鼠原代表皮细胞进行经典标记滞留分析和体外细胞克隆实验,证实METTL14的丢失损伤了表皮干细胞的干性10。Xi等8的研究还显示,METTL3的敲除影响到小鼠表皮分化的后期阶段。正常状态下,当棘细胞过渡到颗粒层时,细胞由最初保有转录活性,进入到发生破坏阶段,随后失去细胞核和其他细胞器,变平成为死亡的“鳞片”。然而,条件性敲除METTL3小鼠表皮失去该种特性,其颗粒层中仍有相当数量的细胞核8。可见,m6A甲基化的下调损害了表皮细胞正常生理的增殖、分化能力,从而影响创面修复。

    创面愈合是一个连续、动态、复杂的过程,其修复阶段包括止血、炎症、血管生成、肉芽组织形成、再上皮化和重塑11。m6A及其相关调控蛋白参与了炎症、血管生成和纤维化等与创面修复相关的病理进程。

    创伤后的炎症反应主要发生于伤后即刻至48 h或更长的时间。作为创面修复的始动环节,炎症反应可为创面招募各种炎症细胞、吞噬病原体和坏死组织碎片、分泌相应炎症因子和细胞因子,促进创面组织修复及重塑。近年来研究显示,m6A参与了该过程的调控。

    METTL3为m6A甲基转移酶复合体中的主要催化蛋白,多项研究关注到该蛋白对炎症反应的调控。在经LPS刺激的人单核细胞诱导分化的巨噬细胞炎症模型中,METTL3过表达可抑制核因子κB的磷酸化和磷酸化的核因子κB核转位,从而抑制核因子κB信号通路,减轻巨噬细胞炎症反应12。另一研究团队观察到,在LPS诱导的小鼠成骨细胞炎症模型中,敲低METTL3通过激活MAPK信号通路促进炎症反应,但对核因子κB信号通路中的2个成分κB抑制因子激酶α/β和核因子κB抑制因子α无明显影响13。而在猪小肠上皮细胞系J2的炎症模型中,METTL3的缺失可通过降低MAPK和核因子κB信号通路的上游分子TNF受体相关因子6(TRAF6)的m6A水平,导致其转录产物被保留在细胞核内,使TRAF6翻译下调,抑制炎症14。人牙髓细胞炎症反应中,敲除METTL3能够促进髓系分化初级反应基因88(MyD88)的剪接变体——短MyD88表达,抑制炎性细胞因子的产生。MyD88是Toll样受体(TLR)信号转导所需的接头蛋白,通过TLR/MyD88介导的核因子κB和MAPK信号通路促进炎症反应15。上述研究表明甲基转移酶METTL3参与了炎症反应调控,但各研究显示的METTL3对炎症的调节方式不尽相同,作用结果甚至相反,这可能与研究的细胞类型不同、研究条件不同等因素有关,也可能表明METTL3可通过影响多个不同的分子动态调节炎症反应。因此,METTL3在创面炎症反应阶段的作用,还有待通过建立新的研究模型进一步探讨。

    此外,其他的m6A相关蛋白也被观察到参与了炎症反应的调控,如甲基转移酶METTL14被认为能够促进人脐静脉内皮细胞(HUVEC)的炎症反应16。而在细菌感染引发的炎症风暴小鼠模型中,研究者观察到METTL14通过上调巨噬细胞中TLR4/核因子κB通路的负调控因子——细胞因子信号抑制物1的m6A甲基化,稳定该分子的mRNA表达,从而减轻炎症反应17。此外,多篇文献表明,m6A结合蛋白YTHDF2通过识别m6A修饰降解炎症通路中的mRNA,从而抑制炎症反应18, 19, 20

    然而,m6A甲基化对炎症的调控不是孤立的,研究表明微小RNA(miR)、蛋白、组蛋白修饰可影响m6A甲基化对炎症的调控。在小鼠大脑动脉缺血再灌注损伤模型中,miR-421-3p靶向抑制m6A结合蛋白YTHDF1的mRNA,使得YTHDF1识别促进核因子κB p65翻译的功能下调,从而抑制炎症21。在辐射诱导巨噬细胞和肺支气管上皮细胞的无菌性炎症模型中,具有锌指蛋白和BTB结构域蛋白7B募集去甲基化酶ALKBH5至IL-6 mRNA上,导致IL-6 mRNA去甲基化及出核受抑,从而抑制炎症22。细菌感染时,研究者观察到敲除THP-1细胞系中YTHDF2可抑制赖氨酸去甲基化酶6B(KDM6B)的mRNA降解,促进组蛋白H3第27位赖氨酸的三甲基化(H3K27me3)去甲基化,激活促炎性细胞因子基因转录以促进炎症;同时,H3K27me3去甲基化又可促进m6A在组蛋白修饰基因(如KDM6B)上的沉积,从而增强mRNA的衰变以抑制炎症,二者相互作用共同调节炎症平衡23

    近年来,越来越多的研究关注到巨噬细胞极化在创面修复中的作用。损伤发生时,巨噬细胞在促炎介质的刺激下极化为M1型,分泌各种炎性细胞因子促进炎症发生。吞噬凋亡细胞后的巨噬细胞从M1型转变为M2型,分泌抗炎细胞因子和促生长因子转而发挥抗炎和组织修复的作用。2种类型的巨噬细胞应环境改变发生相互转化24。有研究者观察到,敲除去甲基化酶FTO降低了信号转导及转录激活因子1(STAT1)和过氧化物酶体增殖物激活受体γ(PPAR-γ) mRNA的稳定性,而STAT1和PPAR-γ分别促进巨噬细胞的M1型和M2型极化,从而认为m6A去甲基化酶FTO促进M1型和M2型巨噬细胞活化25。而Liu等26观察到M1型巨噬细胞中甲基转移酶METTL3 mRNA水平升高,进一步研究显示,上调METTL3促进STAT1 m6A甲基化并增强其mRNA稳定性,从而增高STAT1的表达水平,促进巨噬细胞向M1型极化。可见同是STAT1甲基化上调,不同酶的参与作用结果却截然不同。为此,在研究m6A甲基化的机制中,不仅要关注靶基因的甲基化改变,更要关注机体中甲基化相关酶所带来的影响。

    血管生成是创面增殖阶段的主要特征,它为创面修复提供生长因子、氧气以及能量,是创面愈合的关键步骤。研究显示,m6A参与血管生成的调控。

    研究表明,与血管生成相关的细胞因子可发生mRNA m6A甲基化,从而影响血管生成。在人胃癌血管生成的机制研究中,研究人员观察到在HUVEC中上调METTL3可催化肝癌衍生生长因子(HDGF)甲基化,通过m6A结合蛋白IGF2BP3识别并结合HDGF mRNA上的m6A位点,增强HDGF mRNA稳定性,从而上调HDGF表达,促进肿瘤的血管生成27。而在人结肠癌中,IGF2BP3可调节VEGF mRNA的表达和稳定性,促进结肠癌血管生成28。桥粒蛋白是血管内皮的重要组成部分,一旦缺失会导致毛细血管泄漏和/或形成不良。研究显示,在人脑动静脉畸形中,桥粒蛋白通过WTAP-m6A-IGF2BP1/3依赖的方式稳定mRNA,从而参与血管生成29。可见,在不同疾病中,m6A结合蛋白IGF2BP3可作用于不同的血管生成因子,维持RNA稳定,促进血管生成。此外,研究表明,去甲基化酶FTO的过表达也可促进血管生成。去甲基化酶FTO过表达可促进心肌梗死小鼠模型血管生成30。在小鼠角膜新生血管模型中,研究者观察到FTO可降低促血管生成因子黏着斑激酶(FAK)的m6A甲基化水平,避免YTHDF2识别并降解FAK mRNA,从而维持FAK RNA稳定性,发挥促进血管生成的作用31

    此外,m6A甲基化还可通过修饰信号通路中的分子,参与血管生成的调控。在人脑动静脉畸形中,下调METTL3可以减弱Deltex E3泛素连接酶3L(DTX3L)和DTX1(Deltex 同源物1)的表达,从而协同激活Notch信号通路,最终影响内皮细胞生成血管32。在低氧诱导小鼠视网膜病变模型中,METTL3可以通过YTHDF1依赖的方式增强低密度脂蛋白受体相关蛋白6和蓬乱蛋白Dsh同源物1的翻译,激活Wnt信号通路,从而发挥促血管生成作用33

    2021年,有研究者通过分析人增生性瘢痕和正常皮肤的MeRIP-seq结果了解到,增生性瘢痕与正常皮肤组织的m6A甲基化分布存在差异,且增生性瘢痕中总m6A甲基化水平较正常皮肤组织更高34。目前对于m6A在病理性瘢痕发生发展中的具体作用机制尚不清楚,但瘢痕过度纤维化的皮肤变化与肺纤维化和心脏纤维化高度相似。下列研究揭示了其他纤维化疾病与m6A的关系,希望能够从中得到有关病理性瘢痕发病机制的新启发。

    研究表明,多种纤维化疾病中m6A甲基化修饰发生异常改变。机制上,m6A甲基化可直接影响纤维化相关通路的分子。Li等35在采用结扎左冠状动脉前降支建立的小鼠心肌纤维化模型中观察到,小鼠心肌纤维化组织中METTL3蛋白含量和mRNA水平均较假手术小鼠显著升高,升高的METTL3增加了心脏Fb的增殖和激活,促进了Ⅰ型和Ⅲ型胶原蛋白以及纤维化过程中的重要调节因子Smad2/3的表达,因此认为METTL3至少部分通过Smad介导的信号通路调节心肌纤维化。另有研究者关注到,去甲基化酶ALKBH5能抑制多种上皮标志物,在上皮细胞-间充质转化(EMT)调节中发挥重要作用36, 37。在此基础上,有研究者观察到敲除小鼠肾上皮细胞中ALKBH5后,可抑制上皮黏附分子E-钙黏蛋白的表达,促进α平滑肌肌动蛋白和EMT的关键转录因子Snail的表达,从而导致肾纤维化38

    此外,m6A甲基化还可通过对非编码RNA的修饰间接影响纤维化。在吸入炭黑的大鼠肺纤维化模型中,大鼠肺组织中的初级miR-126 m6A甲基化水平下调阻碍了miR-126的成熟,进而激活了磷脂酰肌醇-3-激酶/蛋白激酶B/哺乳动物雷帕霉素靶蛋白通路,最终推动炭黑暴露后肺内纤维的形成39。METTL3可通过肺腺癌转移相关转录本1/miR-145/FAK轴,导致小鼠梗阻性肾病肾纤维化加重40

    m6A作为一种广泛存在的可逆性转录后修饰,自二代测序以来逐渐成为研究热潮,目前在肿瘤领域已有诸多较为深入的研究。然而,在非肿瘤领域,特别是创面相关问题上有关m6A的研究甚少。本文阐述了m6A在创面修复相关病理生理进程中的作用,然而目前直接研究m6A调节创面愈合机制的相关文章较少,尚需深入探讨。创面修复是一个动态过程,m6A修饰也是一个可逆过程,将二者结合,勾勒动态的创面修复转录后调控机制,也许能为创面愈合提供进一步的认识和新的治疗启发。同时,RNA m6A转录后修饰不是一个独立的调控网络,它与组蛋白修饰、非编码RNA等其他层面的调控有着密切联系。目前来看,m6A及其蛋白在疾病各个病理过程中作用的靶分子多且机制复杂,如何找到创面修复中关键的调控分子和作用靶点是难点,也是重点。进一步而言,在未来的药物研究中, 需要解决m6A甲基化及其相关蛋白缺乏特异性的问题,保证靶向药物一对一发挥效应。

  • [1]
    XuZ, HanS, GuZ, et al. Advances and impact of antioxidant hydrogel in chronic wound healing[J]. Adv Healthc Mater, 2020, 9(5): e1901502. DOI: 10.1002/adhm.201901502.
    [2]
    WilkinsonHN, HardmanMJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10(9): 200223. DOI: 10.1098/rsob.200223.
    [3]
    PrzekoraA. A concise review on tissue engineered artificial skin grafts for chronic wound treatment: can we reconstruct functional skin tissue in vitro?[J]. Cells, 2020, 9(7):1622. DOI: 10.3390/cells9071622.
    [4]
    罗高兴, 吴军. 现代功能材料促进皮肤创面修复[J]. 中华烧伤杂志, 2020, 36(12): 1113-1116. DOI: 10.3760/cma.j.cn501120-20201015-00436
    [5]
    FranceskoA, PetkovaP, TzanovT. Hydrogel dressings for advanced wound management[J]. Curr Med Chem, 2018, 25(41): 5782-5797. DOI: 10.2174/0929867324666170920161246.
    [6]
    Van Den Bulcke AI, BogdanovB, De RoozeN, et al. Structural and rheological properties of methacrylamide modified gelatin hydrogels[J]. Biomacromolecules, 2000, 1(1): 31-38. DOI: 10.1021/bm990017d.
    [7]
    LiuY, Chan-ParkMB. A biomimetic hydrogel based on methacrylated dextran-graft-lysine and gelatin for 3D smooth muscle cell culture[J]. Biomaterials, 2010, 31(6): 1158-1170. DOI: 10.1016/j.biomaterials.2009.10.040.
    [8]
    Van den SteenPE, DuboisB, NelissenI, et al. Biochemistry and molecular biology of gelatinase B or matrix metalloproteinase-9 (MMP-9)[J]. Crit Rev Biochem Mol Biol, 2002, 37(6): 375-536. DOI: 10.1080/10409230290771546.
    [9]
    LiuY, LiZ, LiJ, et al. Stiffness-mediated mesenchymal stem cell fate decision in 3D-bioprinted hydrogels[J/OL]. Burns Trauma,2020,8:tkaa029[2022-07-31]. https://pubmed.ncbi.nlm.nih.gov/32733974/.DOI: 10.1093/burnst/tkaa029.
    [10]
    YueK, Trujillo-de SantiagoG, AlvarezMM, et al. Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels[J]. Biomaterials, 2015, 73: 254-271. DOI: 10.1016/j.biomaterials.2015.08.045.
    [11]
    ChenYC, LinRZ, QiH, et al. Functional human vascular network generated in photocrosslinkable gelatin methacrylate hydrogels[J]. Adv Funct Mater, 2012, 22(10): 2027-2039. DOI: 10.1002/adfm.201101662.
    [12]
    VlierbergheSV, CnuddeV, DubruelP, et al. Porous gelatin hydrogels: 1. Cryogenic formation and structure analysis[J]. Biomacromolecules, 2007, 8(2): 331-337. DOI: 10.1021/bm060684o.
    [13]
    DubruelP, UngerR, VlierbergheSV, et al. Porous gelatin hydrogels: 2. In vitro cell interaction study[J]. Biomacromolecules, 2007, 8(2): 338-344. DOI: 10.1021/bm0606869.
    [14]
    BoereKW, VisserJ, SeyednejadH, et al. Covalent attachment of a three-dimensionally printed thermoplast to a gelatin hydrogel for mechanically enhanced cartilage constructs[J]. Acta Biomater, 2014, 10(6): 2602-2611. DOI: 10.1016/j.actbio.2014.02.041.
    [15]
    NguyenAH, McKinneyJ, MillerT, et al. Gelatin methacrylate microspheres for controlled growth factor release[J]. Acta Biomater, 2015, 13: 101-110. DOI: 10.1016/j.actbio.2014.11.028
    [16]
    DaikuaraLY, YueZ, SkropetaD, et al. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering[J]. Acta Biomater, 2021, 123: 286-297. DOI: 10.1016/j.actbio.2021.01.021.
    [17]
    BornLJ, McLoughlinST, DuttaD, et al. Sustained released of bioactive mesenchymal stromal cell-derived extracellular vesicles from 3D-print ed gelatin methacrylate hydrogels[J]. J Biomed Mater Res A, 2022,110(6):1190-1198. DOI: 10.1002/jbm.a.37362.
    [18]
    HuP, YangQ, WangQ, et al. Mesenchymal stromal cells-exosomes: a promising cell-free therapeutic tool for wound healing and cutaneous regeneration[J/OL]. Burns Trauma, 2019, 7: 38[2022-03-08].https://pubmed.ncbi.nlm.nih.gov/32640572/. DOI: 10.1186/s41038-019-0178-8.
    [19]
    ZhaoD, YuZ, LiY, et al. GelMA combined with sustained release of HUVECs derived exosomes for promoting cutaneous wound healing and facilitating skin regeneration[J]. J Mol Histol, 2020, 51(3): 251-263. DOI: 10.1007/s10735-020-09877-6.
    [20]
    GuanG, LvQ, LiuS, et al. 3D-bioprinted peptide coupling patches for wound healing[J]. Mater Today Bio, 2022, 13: 100188. DOI: 10.1016/j.mtbio.2021.100188.
    [21]
    SalehB, DhaliwalHK, Portillo-LaraR, et al. Local immunomodulation using an adhesive hydrogel loaded with miRNA-laden nanoparticles promotes wound healing[J]. Small, 2019, 15(36): e1902232. DOI: 10.1002/smll.201902232.
    [22]
    SchuurmanW, LevettPA, PotMW, et al. Gelatin-methacrylamide hydrogels as potential biomaterials for fabrication of tissue-engineered cartilage constructs[J]. Macromol Biosci, 2013, 13(5): 551-561. DOI: 10.1002/mabi.201200471.
    [23]
    ChenCS, ZengF, XiaoX, et al. Three-dimensionally printed silk-sericin-based hydrogel scaffold: a promising visualized dressing material for real-time monitoring of wounds[J]. ACS Appl Mater Interfaces, 2018, 10(40): 33879-33890. DOI: 10.1021/acsami.8b10072.
    [24]
    KurianAG, SinghRK, PatelKD, et al. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics[J]. Bioact Mater, 2022, 8: 267-295. DOI: 10.1016/j.bioactmat.2021.06.027.
    [25]
    NuutilaK, SamandariM, EndoY, et al. In vivo printing of growth factor-eluting adhesive scaffolds improves wound healing[J]. Bioact Mater, 2022, 8: 296-308. DOI: 10.1016/j.bioactmat.2021.06.030.
    [26]
    QuW, WangZ, HuntC, et al. The effectiveness and safety of platelet-rich plasma for chronic wounds: a systematic review and meta-analysis[J]. Mayo Clin Proc, 2021, 96(9): 2407-2417. DOI: 10.1016/j.mayocp.2021.01.030.
    [27]
    QianZ, WangH, BaiY, et al. Improving chronic diabetic wound healing through an injectable and self-healing hydrogel with platelet-rich plasma release[J]. ACS Appl Mater Interfaces, 2020, 12(50): 55659-55674. DOI: 10.1021/acsami.0c17142.
    [28]
    KimM, RheeJ K, ChoiH, et al. Passage-dependent accumulation of somatic mutations in mesenchymal stromal cells during in vitro culture revealed by whole genome sequencing[J]. Sci Rep, 2017, 7(1): 14508. DOI: 10.1038/s41598-017-15155-5.
    [29]
    YoonDS, LeeY, RyuHA, et al. Cell recruiting chemokine-loaded sprayable gelatin hydrogel dressings for diabetic wound healing[J]. Acta Biomater, 2016, 38: 59-68. DOI: 10.1016/j.actbio.2016.04.030.
    [30]
    ZhuJ, LiuZ, WangL, et al. Exosome mimetics-loaded hydrogel accelerates wound repair by transferring functional mitochondrial proteins[J]. Front Bioeng Biotechnol, 2022, 10: 866505. DOI: 10.3389/fbioe.2022.866505.
    [31]
    YuanM, LiuK, JiangT, et al. GelMA/PEGDA microneedles patch loaded with HUVECs-derived exosomes and Tazarotene promote diabetic wound healing[J]. J Nanobiotechnology, 2022, 20(1): 147. DOI: 10.1186/s12951-022-01354-4.
    [32]
    HeJ, ShiM, LiangY, et al. Conductive adhesive self-healing nanocomposite hydrogel wound dressing for photothermal therapy of infected full-thickness skin wounds[J]. Chem Eng J, 2020, 394. DOI: 10.1016/j.cej.2020.124888.
    [33]
    LiuBC, WangY, MiaoY, et al. Hydrogen bonds autonomously powered gelatin methacrylate hydrogels with super-elasticity, self-heal and underwater self-adhesion for sutureless skin and stomach surgery and E-skin[J]. Biomaterials, 2018, 171: 83-96. DOI: 10.1016/j.biomaterials.2018.04.023.
    [34]
    LiuY, WangQ, LiuX, et al. Highly adhesive, stretchable and breathable gelatin methacryloyl-based nanofibrous hydrogels for wound dressings[J]. ACS Appl Bio Mater, 2022, 5(3): 1047-1056. DOI: 10.1021/acsabm.1c01087.
    [35]
    JahanI, GeorgeE, SaxenaN, et al. Silver-nanoparticle-entrapped soft GelMA gels as prospective scaffolds for wound healing[J]. ACS Appl Bio Mater, 2019, 2(5): 1802-1814. DOI: 10.1021/acsabm.8b00663.
    [36]
    AugustineR, ZahidAA, HasanA, et al. Cerium oxide nanoparticle-loaded gelatin methacryloyl hydrogel wound-healing patch with free radical scavenging activity[J]. ACS Biomater Sci Eng, 2021, 7(1): 279-290. DOI: 10.1021/acsbiomaterials.0c01138.
    [37]
    RajabiN, KharazihaM, EmadiR, et al. An adhesive and injectable nanocomposite hydrogel of thiolated gelatin/gelatin methacrylate/Laponite® as a potential surgical sealant[J]. J Colloid Interface Sci, 2020, 564: 155-169. DOI: 10.1016/j.jcis.2019.12.048.
    [38]
    RehmanSRU, AugustineR, ZahidAA, et al. Reduced graphene oxide incorporated GelMA hydrogel promotes angiogenesis for wound healing applications[J]. Int J Nanomedicine, 2019, 14: 9603-9617. DOI: 10.2147/IJN.S218120.
    [39]
    Velasco-RodriguezB, Diaz-VidalT, Rosales-RiveraLC, et al. Hybrid methacrylated gelatin and hyaluronic acid hydrogel scaffolds. Preparation and systematic characterization for prospective tissue engineering applications[J]. Int J Mol Sci, 2021, 22(13):6758. DOI: 10.3390/ijms22136758.
    [40]
    NazirF, AshrafI, IqbalM, et al. 6-deoxy-aminocellulose derivatives embedded soft gelatin methacryloyl (GelMA) hydrogels for improved wound healing applications: in vitro and in vivo studies[J]. Int J Biol Macromol, 2021, 185: 419-433. DOI: 10.1016/j.ijbiomac.2021.06.112.
    [41]
    KlotzBJ, GawlittaD, RosenbergA, et al. Gelatin-methacryloyl hydrogels: towards biofabrication-based tissue repair[J]. Trends Biotechnol, 2016, 34(5): 394-407. DOI: 10.1016/j.tibtech.2016.01.002.
    [42]
    GrollJ, BolandT, BlunkT, et al. Biofabrication: reappraising the definition of an evolving field[J]. Biofabrication, 2016, 8(1): 013001. DOI: 10.1088/1758-5090/8/1/013001
    [43]
    ShiX, OstrovidovS, ZhaoY, et al. Microfluidic spinning of cell-responsive grooved microfibers[J]. Adv Funct Mater, 2015, 25(15): 2250-2259. DOI: 10.1002/adfm.201404531.
    [44]
    NicholJW, KoshyST, BaeH, et al. Cell-laden microengineered gelatin methacrylate hydrogels[J]. Biomaterials, 2010, 31(21): 5536-5544. DOI: 10.1016/j.biomaterials.2010.03.064.
    [45]
    ChenX, YueZ, WinbergPC, et al. 3D bioprinting dermal-like structures using species-specific ulvan[J]. Biomater Sci, 2021, 9(7): 2424-2438. DOI: 10.1039/d0bm01784a.
  • Relative Articles

    [1]Li Yashu, He Weifeng, Lyu Kaiyang. Role and mechanism of Vγ4 T cell depletion in epidermal tissue repair after ultraviolet damage to mouse skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(5): 415-424. doi: 10.3760/cma.j.cn501225-20240121-00026
    [2]Heng Xue, Li Buying, Gao Shijie, Lu Changjin, Zhang Xiaorong, Hu Xiaohong, Luo Gaoxing, Li Haisheng. Role and mechanism of P311 in the differentiation of mouse skin fibroblasts into myofibroblasts[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(9): 849-856. doi: 10.3760/cma.j.cn501225-20231215-00245
    [3]Zhang Lixia, Hu Dahai. Research advances on the role of aerobic glycolysis in skin fibrosis diseases[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(4): 389-394. doi: 10.3760/cma.j.cn501225-20230712-00004
    [4]Li Wei, Kong Weishi, Bao Yulu, Sun Yu. Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1090-1095. doi: 10.3760/cma.j.cn501225-20221123-00502
    [5]Chen Wei, Xu Guangchao, Huang Zhonglu, Chen Li, Nie Kaiyu. Research advances on the mechanism of nerve regeneration-related protein in skin fibrosis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(5): 491-495. doi: 10.3760/cma.j.cn501225-20220701-00278
    [6]Li Jin, Wu Haibo, Jin Guangzhe, Zhu Congkun, Wang Kai, Wang Qiang, Ju Jihui, Hou Ruixing. Comparative study of the effects between second toe tibial dorsal artery flap and second toe tibial plantar proper artery flap in repairing finger skin and soft tissue defects[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 937-943. doi: 10.3760/cma.j.cn501120-20210909-00310
    [7]Zhu Dongzhen, Yao Bin, Yan Ziqiang, Huang Sha, Fu Xiaobing. Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 983-988. doi: 10.3760/cma.j.cn501120-20210723-00257
    [8]Ma Xianjie, Ding Jianke. Application of skin and soft tissue expansion in repairing pediatric patients with superficial defects[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(4): 301-305. doi: 10.3760/cma.j.cn501120-20211019-00359
    [9]He Xiang, Li Jie, Liu Jiaqi, Zheng Zhao, Hu Dahai. Expressions and effects of autophagy-related genes in bleomycin-induced skin fibrosis of mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(5): 346-356. doi: 10.3760/cma.j.cn501120-20200210-00047
    [10]Qi Jianghong, Cai Yuan, Deng Chengliang. Research update of effects of adipose tissue and component transplantation on scar treatment[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(7): 623-626. doi: 10.3760/cma.j.cn501120-20200311-00151
    [11]Zhu Zhikang, Wu Pan, Wang Xingang, Han Chunmao. Advances in the research of sensory nerve regeneration in tissue engineering skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(3): 237-240. doi: 10.3760/cma.j.issn.1009-2587.2019.03.016
    [12]Li Feng, Wang Hongwei, Yin Huinan, Chi Yunfei, Hu Quan, Liu Wei, Chen Qi, Zhang Qinxue, Chen Xin, Liang Zhanling, Sun Yingjie, Ma Xiaofeng. Clinical effects and mechanism of treating extensive deep burns by stage-Ⅱ Meek skin grafting on adipose tissue after tangential excision[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(6): 446-450. doi: 10.3760/cma.j.issn.1009-2587.2019.06.009
    [13]Huang Hong, Qiu Wei, Zhu Ming, Zhang Ya, Cui Wenhui, Xing Wei, Li Xiangyun, An Tianchen, Chen Minjia, Guo Wei, Xu Xiang. Expressions of the key proteins of the protein kinase B/mammalian target of rapamycin signaling pathway in skin tissue and wound tissue of diabetic rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(10): 588-593. doi: 10.3760/cma.j.issn.1009-2587.2016.10.004
    [14]Yu Xiaoping, Kang Yutian, Zuo Yanhai, Liu Chuanbo, Ye Junna, Yuan Bo, Ji Xiaoyun, Song Fei, Jiang Yuzhi, Xiao Yurui, Jin Shuwen, Lu Shuliang. Fibrosis after damage to fat dome structure of skin of pig[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2015, 31(5): 349-353. doi: 10.3760/cma.j.issn.1009-2587.2015.05.009
    [15]LUO Xu, XIN Guo-hua, ZENG Tao-fang, LIN Cai, ZENG Yuan-lin, LI Yu-cong, QIU Ze-liang. Effects of microporous porcine acellular dermal matrix combined with bone marrow mesenchymalcells of rats on the regeneration of cutaneous appendages cells in nude mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(6): 541-547. doi: 10.3760/cma.j.issn.1009-2587.2013.06.012
    [16]TENG Jian-ying, GUO Rui, XIE Jing, SUN Dong-jie, SHEN Ming-qiang, XU Shao-jun. Effects of different artificial dermal scaffolds on vascularization and scar formation of wounds in pigs with full-thickness burn[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(1): 13-18. doi: 10.3760/cma.j.issn.1009-2587.2012.01.005
    [17]GE Xiao-jing, JIANG Yu-zhi, ZHANG Hong-wei. Advances in research of the mechanism of " covert disorder" in diabetic skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2012, 28(1): 51-53. doi: 10.3760/cma.j.issn.1009-2587.2012.01.012
    [18]ZHENG Zhao, HU Da- hai, ZHU Xiong-xiang, HAN Jun-tao, WANG Yao-jun, LI Na, HAN Fu, XU Ming-da. Microsurgical repair of skin and soft tissue defects on head, face, and neck[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2010, 26(4): 263-267. doi: 10.3760/cma.j.issn.1009-2587.2010.04.005
    [20]ZHANG zhi, LIU Yan, ZHANG Xiong, XU Wei-shi. The content of decorin and its mRNA expression in normal human skin and hyperplastic scars[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2004, 20(2): 76-78.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (706) PDF downloads(83) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return