He ZL,Li J,Sui ZY,et al.Application and clinical efficacy of ultrasound debridement method in residual burn wounds[J].Chin J Burns Wounds,2022,38(11):1034-1039.DOI: 10.3760/cma.j.cn501120-20211123-00396.
Citation: He ZL,Li J,Sui ZY,et al.Application and clinical efficacy of ultrasound debridement method in residual burn wounds[J].Chin J Burns Wounds,2022,38(11):1034-1039.DOI: 10.3760/cma.j.cn501120-20211123-00396.

Application and clinical efficacy of ultrasound debridement method in residual burn wounds

doi: 10.3760/cma.j.cn501120-20211123-00396
Funds:

Medical Science Research Project of Hebei Province of China 20211620

More Information
  •   Objective  To investigate the application and clinical efficacy of ultrasound debridement method in residual burn wounds.  Methods  A retrospective cohort study was conducted. From August 2017 to August 2021, 64 patients with residual burn wounds who met the inclusion criteria were admitted to the 980th Hospital of the Joint Logistic Support Force of PLA. According to the debridement method adopted for the residual wounds, the patients were divided into ultrasound debridement group (34 cases, 22 males and 12 females, aged (31±13) years) and traditional debridement group (30 cases, 19 males and 11 females, aged (32±13) years). After the corresponding debridement, the wounds of patients in the two groups were selected for stamp skin grafting or large skin grafting according to the wound site and skin donor status. For unhealed wounds after stage Ⅰ surgery, secondary debridement and skin grafting were be performed, with the wound debridement methods in the 2 groups being the same as those of stage Ⅰ, respectively. On postoperative day 3, drug-sensitive test was used to detect the bacteria in the wound and the positive rate of bacteria was calculate. On postoperative day 7, the survival rate of skin slices in wound and the incidence of subcutaneous hematoma were calculated. At discharge, wound healing time and debridement times of patients were counted, and the secondary debridement rate was calculated. Data were statistically analyzed with independent sample t test or chi-square test.  Results  On postoperative day 3, the wounds in ultrasound debridement group were infected with Staphylococcus aureus in 2 cases and Pseudomonas aeruginosa in 2 cases, and the wounds in traditional debridement group were infected with Staphylococcus aureus in 5 cases, Pseudomonas aeruginosa in 3 cases, Acinetobacter baumannii in 1 cases, Klebsiella pneumoniae in 1 cases, and Enterobacter cloacae in 1 cases. The positive rate of bacteria of wound in ultrasound debridement group was significantly lower than that in traditional debridement group (χ2=5.51, P<0.05). On postoperative day 7, the survival rate of skin grafts in ultrasound debridement group was (92±5) %, which was significantly higher than (84±10) % in traditional debridement group (χ2=6.78, P<0.01); the incidence of subcutaneous hematoma in ultrasound debridement group was 17.6% (6/34), which was significantly lower than 40.0%( 12/30) in traditional debridement group, χ2=3.94, P<0.05. At discharge, the wound healing time in ultrasound debridement group was (11.0±2.0) d, which was significantly shorter than (13.0±3.1) d in traditional debridement group (t=3.81, P<0.01); the secondary debridement rate of wounds in ultrasound debridement group was 2.9% (1/34), which was significantly lower than 20.0% (6/30) in traditional debridement group (χ2=4.76, P<0.05).  Conclusions  Ultrasound debridement method can significantly reduce the bacterial load of residual burn wounds, reduce postoperative hematoma formation, and promote the survival of skin grafts to shorten the course of disease of patients.

     

  • [1]
    TredgetEE, ShuppJW, SchneiderJC. Scar management following burn injury[J]. J Burn Care Res, 2017,38(3):146-147. DOI: 10.1097/BCR.0000000000000548.
    [2]
    吴军, 王玉振. 中国烧伤康复医学历程[J]. 中华烧伤杂志,2019,35(2):81-85. DOI: 10.3760/cma.j.issn.1009-2587.2019.02.001.
    [3]
    WangY, BeekmanJ, HewJ, et al. Burn injury: challenges and advances in burn wound healing, infection, pain and scarring[J]. Adv Drug Deliv Rev, 2018,123:3-17. DOI: 10.1016/j.addr.2017.09.018.
    [4]
    刘功成, 阚朝辉, 盛嘉隽, 等. 水动力清创系统在严重烧伤患者大面积残余创面清创中的应用效果[J].中华烧伤杂志,2016,32(9):549-554. DOI: 10.3760/cma.j.issn.1009-2587.2016.09.008.
    [5]
    CampitielloF, ManconeM, CorteAD, et al. An evaluation of an ultrasonic debridement method system in patients with diabetic foot ulcers: a case series[J]. J Wound Care, 2018,27(4):222-228. DOI: 10.12968/jowc.2018.27.4.222.
    [6]
    PalmieriB, VadalàM, LaurinoC. Electromedical devices in wound healing management: a narrative review[J]. J Wound Care, 2020,29(7):408-418. DOI: 10.12968/jowc.2020.29.7.408.
    [7]
    LianC, LiuH, LiuXJ, et al. Methylene blue staining and ultrasonic debridement method: a superior therapeutic strategy for pressure ulcer debridement[J]. Int J Low Extrem Wounds, 2021,20(1):73-74. DOI: 10.1177/1534734620980886.
    [8]
    LianC, LiuHL, LiYR, et al. Combination application of ultrasonic debridement method, methylene blue staining, and negative pressure wound therapy for severe pressure ulcers[J]. Int Wound J, 2020,17(1):232-233. DOI: 10.1111/iwj.13261.
    [9]
    WangM, XuX, LeiX, et al. Mesenchymal stem cell-based therapy for burn wound healing[J/OL]. Burns Trauma, 2021,9:tkab002[2021-11-23]. https://pubmed.ncbi.nlm.nih.gov/34212055/. DOI: 10.1093/burnst/tkab002.
    [10]
    ChenY, ZhangX, LiuZ, et al. Obstruction of the formation of granulation tissue leads to delayed wound healing after scald burn injury in mice[J/OL]. Burns Trauma, 2021,9:tkab004[2021-11-23]. https://pubmed.ncbi.nlm.nih.gov/34212057/. DOI: 10.1093/burnst/tkab004.
    [11]
    ChiY, YinH, ChenX, et al. Effect of precise partial scab removal on the repair of deep partial-thickness burn wounds in children: a retrospective study[J]. Transl Pediatr, 2021,10(11):3014-3022. DOI: 10.21037/tp-21-500.
    [12]
    BekaraF, VitseJ, FluieraruS, et al. New techniques for wound management: a systematic review of their role in the management of chronic wounds[J]. Arch Plast Surg, 2018,45(2):102-110. DOI: 10.5999/aps.2016.02019.
    [13]
    ThomasDC, TsuCL, NainRA, et al. The role of debridement in wound bed preparation in chronic wound: a narrative review[J]. Ann Med Surg (Lond), 2021,71:102876. DOI: 10.1016/j.amsu.2021.102876.
    [14]
    路遥, 杨润功, 朱加亮. 慢性创面清创技术的研究进展[J].中国修复重建外科杂志,2018,32(8):1096-1101. DOI: 10.7507/1002-1892.201801126.
    [15]
    GartenmannSJ, ThurnheerT, AttinT, et al. Influence of ultrasonic tip distance and orientation on biofilm removal[J]. Clin Oral Investig, 2017,21(4):1029-1036. DOI: 10.1007/s00784-016-1854-8.
    [16]
    VianaL, PompeoM. Healing rate of chronic and subacute lower extremity ulcers treated with contact ultrasound followed by noncontact ultrasound therapy: the VIP ultrasound protocol[J]. Wounds, 2017,29(8):231-239.
    [17]
    翟明翠, 刘锐, 井维斌, 等. 超声清创法治疗慢性创面的疗效观察[J/CD].中华损伤与修复杂志:电子版,2019,14(4):275-279. DOI: 10.3877/cma.j.issn.1673-9450.2019.04.007.
    [18]
    贾国璞, 刘晓丽, 高英杰, 等. 超声清创法联合重组人表皮生长因子治疗肛周脓肿合并感染的效果[J].中华医院感染学杂志,2021,31(3):424-428. DOI: 10.11816/cn.ni.2021-201378.
    [19]
    ZouQ, WangW, LiQ, et al. Effect of ultrasound debridement on serum inflammatory factors and bFGF, EGF expression in wound tissues[J]. J Coll Physicians Surg Pak, 2019,29(3):222-225. DOI: 10.29271/jcpsp.2019.03.222.
    [20]
    SteedDL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity ulcers[J]. Plast Reconstr Surg, 2006,117(7 Suppl):S143-149; discussion S150-151. DOI: 10.1097/01.prs.0000222526.21512.4c.
    [21]
    KataokaY, KunimitsuM, NakagamiG, et al. Effectiveness of ultrasonic debridement method on reduction of bacteria and biofilm in patients with chronic wounds: a scoping review[J]. Int Wound J, 2021,18(2):176-186. DOI: 10.1111/iwj.13509.
    [22]
    MirzaeiR, RanjbarR. Hijacking host components for bacterial biofilm formation: an advanced mechanism[J]. Int Immunopharmacol, 2022,103:108471. DOI: 10.1016/j.intimp.2021.108471.
    [23]
    da SilvaR, AfoninaI, KlineKA. Eradicating biofilm infections: an update on current and prospective approaches[J]. Curr Opin Microbiol, 2021,63:117-125. DOI: 10.1016/j.mib.2021.07.001.
    [24]
    HemmatiF, RezaeeMA, EbrahimzadehS, et al. Novel strategies to combat bacterial biofilms[J]. Mol Biotechnol, 2021,63(7):569-586. DOI: 10.1007/s12033-021-00325-8.
    [25]
    RuhalR, KatariaR. Biofilm patterns in gram-positive and gram-negative bacteria[J]. Microbiol Res, 2021,251:126829. DOI: 10.1016/j.micres.2021.126829.
    [26]
    SenCK, RoyS, Mathew-SteinerSS, et al. Biofilm management in wound care[J]. Plast Reconstr Surg, 2021,148(2):275e-288e. DOI: 10.1097/PRS.0000000000008142.
    [27]
    KamineniS, HuangC. The antibacterial effect of sonication and its potential medical application[J]. SICOT J, 2019,5:19. DOI: 10.1051/sicotj/2019017.
    [28]
    TewarieL, ChernigovN, GoetzenichA, et al. The effect of ultrasound-assisted debridement combined with vacuum pump therapy in deep sternal wound infections[J]. Ann Thorac Cardiovasc Surg, 2018,24(3):139-146. DOI: 10.5761/atcs.oa.17-00244.
    [29]
    Lázaro-MartínezJL, Álvaro-AfonsoFJ, García-ÁlvarezY, et al. Ultrasound-assisted debridement of neuroischaemic diabetic foot ulcers, clinical and microbiological effects: a case series[J]. J Wound Care, 2018,27(5):278-286. DOI: 10.12968/jowc.2018.27.5.278.
    [30]
    HuangG, ChenS, DaiC, et al. Effects of ultrasound on microbial growth and enzyme activity[J]. Ultrason Sonochem, 2017,37:144-149. DOI: 10.1016/j.ultsonch.2016.12.018.
    [31]
    MoriY, NakagamiG, KitamuraA, et al. Effectiveness of biofilm-based wound care system on wound healing in chronic wounds[J]. Wound Repair Regen, 2019,27(5):540-547. DOI: 10.1111/wrr.12738.
    [32]
    LaiJ, PittelkowMR. Physiological effects of ultrasound mist on fibroblasts[J]. Int J Dermatol, 2007,46(6):587-593. DOI: 10.1111/j.1365-4632.2007.02914.x.
    [33]
    MurphyCA, HoughtonP, BrandysT, et al. The effect of 22.5 kHz low-frequency contact ultrasound debridement (LFCUD) on lower extremity wound healing for a vascular surgery population: a randomised controlled trial[J]. Int Wound J, 2018,15(3):460-472. DOI: 10.1111/iwj.12887.
    [34]
    KavrosSJ, MillerJL, HannaSW. Treatment of ischemic wounds with noncontact, low-frequency ultrasound: the Mayo clinic experience, 2004-2006[J]. Adv Skin Wound Care, 2007,20(4):221-226. DOI: 10.1097/01.ASW.0000266660.88900.38.
    [35]
    尹会男, 柴家科, 李利根. 超声清创法系统结合负压创面疗法在骨外露创面中的应用[J/CD]. 中华损伤与修复杂志:电子版,2011,6(2):239-246.DOI: 10.3877/cma.j.issn.1673-9450.2011.02.012.
    [36]
    HagaM, InoueH, ShindoS. Treatment of prosthetic vascular graft infection in the groin with ultrasound debridement: a case report[J]. Ann Med Surg (Lond), 2020,60:68-71. DOI: 10.1016/j.amsu.2020.10.037.
  • Relative Articles

    [1]Expert consensus on the treatment of second-degree burn wounds (2024 edition) Ⅱ: surgical treatment and infection prevention and treatment[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(2): 101-118. doi: 10.3760/cma.j.cn501225-20240112-00015
    [2]Yao Yongming, Luan Yingyi. New understanding on the immunity for severe infections and complications in burns and trauma[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(6): 519-523. doi: 10.3760/cma.j.cn501120-20210118-00025
    [3]Jiang Bo, Tang Rui, Zheng Danyu, Yang Yuting, Li Ying, Yang Ruqian, Liu Ligang, Yan Hong. Clinical effectiveness of super pulsed carbon dioxide fractional laser debridement surgery in treating chronic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(4): 273-279. doi: 10.3760/cma.j.cn501120-20190415-00186
    [4]Wang Jingjing, Yang Lei, Chen Xu. Observation on the effect of liquid paraffin as adjuvant therapy in treating residual wounds of patients with severe burns[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(4): 304-307. doi: 10.3760/cma.j.cn501120-20190316-00122
    [5]Fan Youfen, Chen Cui, Li Jiliang, Huang Neng, Cui Shengyong. Five patients with severe burns complicated by fungal infection[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(3): 221-223. doi: 10.3760/cma.j.issn.1009-2587.2019.03.011
    [6]Li Xingzhao, Cai Chen, Xu Qinglian, Hu Delin, Song Junhui, Xia Zhengguo. Analysis of reasons for failure of Meek micro-skin grafting in children with severe burn and treatment measures[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(7): 525-531. doi: 10.3760/cma.j.issn.1009-2587.2019.07.009
    [7]Li Mengyun, Mao Yuangui, Guo Guanghua, Liu Dewu. Application of a hydrosurgery system in debridement of various types of burn wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(9): 574-576. doi: 10.3760/cma.j.issn.1009-2587.2016.09.014
    [8]Liu Gongcheng, Kan Zhaohui, Sheng Jiajun, Li Haihang, Li Lei, Sun Yu, Ji Shizhao, Zhu Shihui. Efficacy of a hydrosurgery system applied in the debridement of extensive residual wounds of patients with severe burn[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(9): 549-554. doi: 10.3760/cma.j.issn.1009-2587.2016.09.008
    [10]YANG Hui-zhong, WANG Wen-kui, YUAN Li-li, WANG Shun-bin, LUO Gao-xing, WU Jun, NIU Xi-hua, SUN Bing-wei, DU Guang-gang, LI Hai-hui, CHEN Shun, CHEN Zhao-hong, XIA Cheng-de, LI Shu-ren, LV Tao, SUN Hui, CHEN Xi, HE Xiao-long, ZHANG Bing, HUAN Jing-ning. Multi-center clinical trial of FLAMIGEL (hydrogel dressing) for the treatment of residual burn wound[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(2): 177-180. doi: 10.3760/cma.j.issn.1009-2587.2013.02.021
    [13]ZHANG Da-wei, GONG Zhen-yu, PENG Yi-zhi. Reproduction of a rat model of burn with infection[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2011, 27(2): 104-108. doi: 10.3760/cma.j.issn.1009-2587.2011.02.007
    [14]LEI Jin, LI Hu-shan, HAO Zhen-ming, DUAN Peng, HAO Wen-jie. Mode of debridement, negative-pressure therapy combined with tissue transplantation for treatment of complicated and refractory wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2011, 27(6): 456-460. doi: 10.3760/cma.j.issn.1009-2587.2011.06.015
    [15]ZHANG Qin, LIAO Zhen-jiang. To intensify our understanding about management of severe burn infection[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(2): 81-83. doi: 10.3760/cma.j.issn.1009-2587.2009.02.001
    [16]HUAN Jing-ning, GAO Cheng-jin. Strategies for prevention and cure of burn infection[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(2): 87-90. doi: 10.3760/cma.j.issn.1009-2587.2009.02.004
    [17]HUANG Bo-gao, LIAO Zhen-jiang, ZHANG Qin, DOU Yi. Comparison between intermingled skin transplantation and microskin grafting in repairing massive deep burn[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2009, 25(6): 448-450. doi: 10.3760/cma.j.issn.1009-2587.2009.06.017
    [18]CHAI Jia-ke, SHENG Zhi-yong. A brief account of prevention and treatment of infection in burn patients[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(2): 84-86.
    [19]GAO Wel-dong, LIU Xu-sheng, HAN Xing, HAN Yu-guo, YU Ji-chao. The application of artificial dermis and recombinant bFGF tier immersion bath in residual burn wound[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2007, 23(1): 40-42.
    [20]LI Xiao-lu, HUANG Yue-sheng, PENG Yi-zhi, LIAO Zhen-jiang, ZHANG Guo-an, LIU Qun, TANG Jin, LIU Xu-sheng, LUO Qi-zhi. Multi-center clinical study of Acticoat (nanocrystalline silver dressing) for the management of residual burn wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2006, 22(1): 15-18.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-042024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-03010203040
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 22.4 %FULLTEXT: 22.4 %META: 68.9 %META: 68.9 %PDF: 8.7 %PDF: 8.7 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 6.5 %其他: 6.5 %其他: 0.6 %其他: 0.6 %Indianapolis: 0.5 %Indianapolis: 0.5 %[]: 0.3 %[]: 0.3 %三明: 0.2 %三明: 0.2 %上海: 0.8 %上海: 0.8 %东京: 0.3 %东京: 0.3 %东莞: 0.8 %东莞: 0.8 %临沂: 0.3 %临沂: 0.3 %亳州: 0.3 %亳州: 0.3 %信阳: 0.2 %信阳: 0.2 %六安: 0.2 %六安: 0.2 %北京: 1.6 %北京: 1.6 %华沙: 0.2 %华沙: 0.2 %南京: 0.3 %南京: 0.3 %南宁: 0.2 %南宁: 0.2 %南通: 0.2 %南通: 0.2 %台北: 0.2 %台北: 0.2 %合肥: 0.6 %合肥: 0.6 %吉隆坡: 0.2 %吉隆坡: 0.2 %周口: 0.3 %周口: 0.3 %呼伦贝尔: 0.2 %呼伦贝尔: 0.2 %哥伦布: 0.3 %哥伦布: 0.3 %唐山: 0.8 %唐山: 0.8 %喀什: 0.2 %喀什: 0.2 %多伦多: 0.3 %多伦多: 0.3 %大连: 0.2 %大连: 0.2 %天津: 0.2 %天津: 0.2 %太原: 0.2 %太原: 0.2 %娄底: 0.2 %娄底: 0.2 %宁波: 0.5 %宁波: 0.5 %安康: 0.2 %安康: 0.2 %宣城: 1.6 %宣城: 1.6 %宿州: 0.2 %宿州: 0.2 %广州: 0.5 %广州: 0.5 %张家口: 1.3 %张家口: 1.3 %张家界: 0.2 %张家界: 0.2 %彰化: 0.2 %彰化: 0.2 %徐州: 0.5 %徐州: 0.5 %德阳: 0.3 %德阳: 0.3 %成都: 1.0 %成都: 1.0 %扬州: 0.3 %扬州: 0.3 %新乡: 0.2 %新乡: 0.2 %昆明: 2.9 %昆明: 2.9 %杭州: 0.8 %杭州: 0.8 %武汉: 0.8 %武汉: 0.8 %汕头: 0.2 %汕头: 0.2 %沈阳: 0.2 %沈阳: 0.2 %泉州: 0.2 %泉州: 0.2 %济南: 0.6 %济南: 0.6 %济源: 0.2 %济源: 0.2 %海口: 0.5 %海口: 0.5 %海得拉巴: 0.5 %海得拉巴: 0.5 %深圳: 1.3 %深圳: 1.3 %渭南: 0.5 %渭南: 0.5 %湛江: 0.2 %湛江: 0.2 %滨州: 0.2 %滨州: 0.2 %濮阳: 0.6 %濮阳: 0.6 %石家庄: 0.8 %石家庄: 0.8 %第聂伯罗彼得罗夫斯克: 0.5 %第聂伯罗彼得罗夫斯克: 0.5 %芒廷维尤: 51.8 %芒廷维尤: 51.8 %芜湖: 0.2 %芜湖: 0.2 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.6 %苏州: 0.6 %蚌埠: 0.2 %蚌埠: 0.2 %衡水: 0.2 %衡水: 0.2 %襄阳: 0.6 %襄阳: 0.6 %西宁: 1.6 %西宁: 1.6 %西安: 1.1 %西安: 1.1 %西雅图: 0.3 %西雅图: 0.3 %赣州: 0.2 %赣州: 0.2 %连云港: 0.3 %连云港: 0.3 %郑州: 0.5 %郑州: 0.5 %重庆: 5.2 %重庆: 5.2 %长沙: 1.0 %长沙: 1.0 %青岛: 0.6 %青岛: 0.6 %香港: 0.3 %香港: 0.3 %鹰潭: 0.2 %鹰潭: 0.2 %黄冈: 0.2 %黄冈: 0.2 %齐齐哈尔: 0.2 %齐齐哈尔: 0.2 %其他其他Indianapolis[]三明上海东京东莞临沂亳州信阳六安北京华沙南京南宁南通台北合肥吉隆坡周口呼伦贝尔哥伦布唐山喀什多伦多大连天津太原娄底宁波安康宣城宿州广州张家口张家界彰化徐州德阳成都扬州新乡昆明杭州武汉汕头沈阳泉州济南济源海口海得拉巴深圳渭南湛江滨州濮阳石家庄第聂伯罗彼得罗夫斯克芒廷维尤芜湖芝加哥苏州蚌埠衡水襄阳西宁西安西雅图赣州连云港郑州重庆长沙青岛香港鹰潭黄冈齐齐哈尔

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)  / Tables(1)

    Article Metrics

    Article views (426) PDF downloads(54) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return