Citation: | Ou ZL,Wang J,Shi R,et al.Influence of reactive oxygen species responsive self-assembled nanomicelle loaded with pyroptosis inhibitor on full-thickness skin defects in diabetic rats[J].Chin J Burns Wounds,2023,39(1):35-44.DOI: 10.3760/cma.j.cn501225-20221109-00483. |
[1] |
MatooriS, VevesA, MooneyDJ. Advanced bandages for diabetic wound healing[J]. Sci Transl Med,2021, 13(585):eabe4839.DOI: 10.1126/scitranslmed.abe4839.
|
[2] |
DekoninckS, BlanpainC. Stem cell dynamics, migration and plasticity during wound healing[J]. Nat Cell Biol,2019,21(1):18-24.DOI: 10.1038/s41556-018-0237-6.
|
[3] |
WillenborgS, EmingSA. Cellular networks in wound healing[J]. Science,2018,362(6417):891-892.DOI: 10.1126/science.aav5542.
|
[4] |
SiesH, JonesDP. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol,2020,21(7):363-383.DOI: 10.1038/s41580-020-0230-3.
|
[5] |
MittlerR,ZandalinasSI,FichmanY,et al.Reactive oxygen species signalling in plant stress responses[J].Nat Rev Mol Cell Biol,2022,23(10):663-679.DOI: 10.1038/s41580-022-00499-2.
|
[6] |
NathanC,Cunningham-BusselA.Beyond oxidative stress: an immunologist's guide to reactive oxygen species[J].Nat Rev Immunol,2013,13(5):349-361.DOI: 10.1038/nri3423.
|
[7] |
FranchinaDG, DostertC, BrennerD. Reactive oxygen species: involvement in T cell signaling and metabolism[J].Trends Immunol,2018,39(6):489-502.DOI: 10.1016/j.it.2018.01.005.
|
[8] |
ChaiQ, YuS, ZhongY, et al. A bacterial phospholipid phosphatase inhibits host pyroptosis by hijacking ubiquitin[J].Science,2022,378(6616):eabq0132.DOI: 10.1126/science.abq0132.
|
[9] |
BergsbakenT, FinkSL, CooksonBT. Pyroptosis: host cell death and inflammation[J]. Nat Rev Microbiol,2009,7(2):99-109.DOI: 10.1038/nrmicro2070.
|
[10] |
RaoZ, ZhuY, YangP, et al. Pyroptosis in inflammatory diseases and cancer[J]. Theranostics,2022,12(9):4310-4329.DOI: 10.7150/thno.71086.
|
[11] |
YuP, ZhangX, LiuN, et al. Pyroptosis: mechanisms and diseases[J]. Signal Transduct Target Ther,2021,6(1):128.DOI: 10.1038/s41392-021-00507-5.
|
[12] |
HussainZ,ThuHE,Rawas-QalajiM,et al.Recent developments and advanced strategies for promoting burn wound healing[J]. J Drug Deliv Sci Technol,2022,68:103092.DOI: 10.1016/j.jddst.2022.103092.
|
[13] |
NiuY,LiQ,DingY,et al.Engineered delivery strategies for enhanced control of growth factor activities in wound healing[J].Adv Drug Deliv Rev,2019,146:190-208.DOI: 10.1016/j.addr.2018.06.002.
|
[14] |
MaX,HaoJ,WuJ,et al.Prussian blue nanozyme as a pyroptosis inhibitor alleviates neurodegeneration[J].Adv Mater,2022,34(15):e2106723.DOI: 10.1002/adma.202106723.
|
[15] |
XuN, YuanY, DingL, et al. Multifunctional chitosan/gelatin@tannic acid cryogels decorated with in situ reduced silver nanoparticles for wound healing[J/OL]. Burns Trauma,2022,10:tkac019[2022-11-09].https://pubmed.ncbi.nlm.nih.gov/35910193/.DOI: 10.1093/burnst/tkac019.
|
[16] |
ShiR,LiH,JinX,et al.Promoting re-epithelialization in an oxidative diabetic wound microenvironment using self-assembly of a ROS-responsive polymer and P311 peptide micelles[J].Acta Biomater,2022,152:425-439.DOI: 10.1016/j.actbio.2022.09.017.
|
[17] |
HuangR,HuJ,QianW,et al.Recent advances in nanotherapeutics for the treatment of burn wounds[J/OL].Burns Trauma,2021,9:tkab026[2022-11-09].https://pubmed.ncbi.nlm.nih.gov/34778468/.DOI: 10.1093/burnst/tkab026.
|
[18] |
吴近芳,洪旭东,金剑,等.季铵化壳聚糖-重组组织因子途径抑制物复合物对大鼠碾压撕脱皮瓣的影响[J].中华烧伤杂志,2021,37(12):1158-1165.DOI: 10.3760/cma.j.cn501120-20200914-00409.
|
[19] |
YanR,LiuX,XiongJ,et al.pH-responsive hyperbranched polypeptides based on Schiff bases as drug carriers for reducing toxicity of chemotherapy[J].RSC Adv,2020,10(23):13889-13899.DOI: 10.1039/d0ra01241f.
|
[20] |
DunnillC,PattonT,BrennanJ,et al.Reactive oxygen species (ROS) and wound healing: the functional role of ROS and emerging ROS-modulating technologies for augmentation of the healing process[J].Int Wound J,2017,14(1):89-96.DOI: 10.1111/iwj.12557.
|
[21] |
Las HerasK, IgartuaM, Santos-VizcainoE, et al. Chronic wounds: current status, available strategies and emerging therapeutic solutions[J]. J Control Release,2020,328:532-550.DOI: 10.1016/j.jconrel.2020.09.039.
|
[22] |
VeithAP,HendersonK,SpencerA,et al.Therapeutic strategies for enhancing angiogenesis in wound healing[J].Adv Drug Deliv Rev,2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
|
[23] |
张清荣,杨晓,李正,等.活性氧响应性抗菌微针对糖尿病小鼠细菌定植全层皮肤缺损创面的影响[J].中华烧伤杂志,2021,37(11):1024-1035.DOI: 10.3760/cma.j.cn501120-20210831-00299.
|
[24] |
YaoY, ZhangH, WangZ, et al. Reactive oxygen species (ROS)-responsive biomaterials mediate tissue microenvironments and tissue regeneration[J]. J Mater Chem B,2019,7(33):5019-5037. DOI: 10.1039/c9tb00847k.
|
[25] |
XieW,HuW,HuangZ,et al.Betulinic acid accelerates diabetic wound healing by modulating hyperglycemia-induced oxidative stress, inflammation and glucose intolerance[J/OL]. Burns Trauma,2022,10:tkac007[2022-11-09].https://pubmed.ncbi.nlm.nih.gov/35415192/.DOI: 10.1093/burnst/tkac007.
|
[26] |
ShenM,LiH,YaoS,et al.Shear stress and ROS-responsive biomimetic micelles for atherosclerosis via ROS consumption[J].Mater Sci Eng C Mater Biol Appl,2021,126:112164.DOI: 10.1016/j.msec.2021.112164.
|
[27] |
LiL, WangY, GuoR, et al. Ginsenoside Rg3-loaded, reactive oxygen species-responsive polymeric nanoparticles for alleviating myocardial ischemia-reperfusion injury[J]. J Control Release,2020,317:259-272. DOI: 10.1016/j.jconrel.2019.11.032.
|
[28] |
ZhaoZ,HanZ,NaveenaK,et al.ROS-responsive nanoparticle as a berberine carrier for OHC-targeted therapy of noise-induced hearing loss[J].ACS Appl Mater Interfaces,2021,13(6):7102-7114.DOI: 10.1021/acsami.0c21151.
|
[29] |
ShiCX,WangY,ChenQ,et al.Extracellular histone H3 induces pyroptosis during sepsis and may act through NOD2 and VSIG4/NLRP3 pathways[J].Front Cell Infect Microbiol,2020,10:196.DOI: 10.3389/fcimb.2020.00196.
|
[30] |
MoulinE,NyrkovaIA,GiusepponeN,et al.Homodyne dynamic light scattering in supramolecular polymer solutions: anomalous oscillations in intensity correlation function[J].Soft Matter,2020,16(12):2971-2993.DOI: 10.1039/c9sm02480h.
|
[31] |
ChenYQ, CaoJ, ZhuHY, et al. Synthesis and evaluation of methionine and folate co-decorated chitosan self-assembly polymeric micelles as a potential hydrophobic drug-delivery system[J]. Chin Sci Bull, 2013,58: 2379-2386.DOI: 10.1007/s11434-013-5733-2.
|
[32] |
ColganSP,CampbellEL,KominskyDJ.Hypoxia and mucosal inflammation[J].Annu Rev Pathol,2016,11:77-100.DOI: 10.1146/annurev-pathol-012615-044231.
|
[33] |
PashenkovMV,BalyasovaLS,DagilYA,et al.The role of the p38-MNK-eIF4E signaling axis in TNF production downstream of the NOD1 receptor[J].J Immunol,2017,198(4):1638-1648.DOI: 10.4049/jimmunol.1600467.
|
[34] |
SchäfflerH,GeissD,GittelN,et al.Mutations in the NOD2 gene are associated with a specific phenotype and lower anti-tumor necrosis factor trough levels in Crohn's disease[J].J Dig Dis,2018,19(11):678-684.DOI: 10.1111/1751-2980.12677.
|
[35] |
Di CarloS,HäckerG,GentleIE.GM-CSF suppresses antioxidant signaling and drives IL-1β secretion through NRF2 downregulation[J].EMBO Rep,2022,23(8):e54226.DOI: 10.15252/embr.202154226.
|
[36] |
Abdul-SaterAA,Saïd-SadierN,PadillaEV,et al.Chlamydial infection of monocytes stimulates IL-1β secretion through activation of the NLRP3 inflammasome[J].Microbes Infect,2010,12(8/9):652-661.DOI: 10.1016/j.micinf.2010.04.008.
|