Turn off MathJax
Article Contents
Zhang Ting,Liu Jiaqi,Yang Yunshu,et al.Meek skin grafting combined with platelet-rich plasma in repairing of extensive deep burn wounds: a clinical study[J].Chin J Burns Wounds,2024,40(12):1-7.DOI: 10.3760/cma.j.cn501225-20231124-00206.
Citation: Zhang Ting,Liu Jiaqi,Yang Yunshu,et al.Meek skin grafting combined with platelet-rich plasma in repairing of extensive deep burn wounds: a clinical study[J].Chin J Burns Wounds,2024,40(12):1-7.DOI: 10.3760/cma.j.cn501225-20231124-00206.

Meek skin grafting combined with platelet-rich plasma in repairing of extensive deep burn wounds: a clinical study

doi: 10.3760/cma.j.cn501225-20231124-00206
Funds:

Key Research and Development Plan of Shaanxi Province of China 2022SF-399

More Information
  • Corresponding author: Zheng Zhao, Email: zz73553@163.com
  • Received Date: 2023-11-24
    Available Online: 2024-12-02
  •   Objective  To investigate the clinical effects of Meek skin grafting combined with platelet-rich plasma (PRP) in repairing of extensive deep burn wounds.  Methods  This study was a retrospective observational study. From August 2018 to August 2023, 44 patients who met the inclusion criteria were admitted to the First Affiliated Hospital of Air Force Medical University, including 23 males and 21 females. Their age ranged from 22 to 62 years old and the total burn area was 30%TBSA-80%TBSA, the burns on limbs or torso were deep partial-thickness to full-thickness. According to the treatment process, the patients were divided into observation group (21 cases) and control group (23 cases). For deep burns on the limbs or torso, patients in observation group were treated with Meek skin grafting combined with PRP at the same time, while patients in control group were treated with Meek skin grafting alone. The survival rate of Meek skin grafts was observed on the 10th day after operation. The wound healing rate of patients was observed on the 14th day after operation. The postoperative wound healing time and positive rate of bacterial culture of wound specimens were recorded.  Results  On the 10th day after operation, the skin grafting area in observation group were dry, and the skin grafts adhered closely to the wound base with ruddy color, with a survival rate of 89%±4%. Whereas in control group, some skin grafts fell off, and the residual wounds were scattered in irregular map shape, accompanied by purulent secretion. The survival rate of skin grafts was about 79%±6%, which was significantly lower than that in observation group (t=6.72, P<0.05). On the 14th day after operation, 19 patients in observation group had complete wound healing in the operation area, and the other 2 patients had small residual wounds, which healed after 1 week of dressing change; in control group, 12 patients had complete wound healing, 6 patients had wound healing after supplementary stamp skin grafting, and 5 patients had delayed wound healing after dressing change. The wound healing rate was significantly lower than that in observation group (P<0.05). The wound healing time of the operation area in observation group was (13.29±1.65) days, which was significantly shorter than (16.39±3.49) days in control group (t=3.72, P<0.05). There was no statistically significant difference in the positive rate of bacterial culture of wound specimens between the two groups after operation.  Conclusions  Compared with Meek skin grafting alone, Meek skin grafting combined with autologous PRP can improve the therapeutic effect in the repairing of extensive deep burn wounds, by promoting the survival of skin grafts, accelerating the expansion and fusion of skin grafts, and shortening the wound healing time.

     

  • loading
  • [1]
    QuinteroEC, MachadoJ, RoblesR. Meek micrografting history, indications, technique, physiology and experience: a review article[J]. J Wound Care, 2018,27(Suppl 2):S12-S18. DOI: 10.12968/jowc.2018.27.Sup2.S12.
    [2]
    RijpmaD, ClaesK, HoeksemaH, et al. The Meek micrograft technique for burns; review on its outcomes: searching for the superior skin grafting technique[J]. Burns, 2022,48(6):1287-1300. DOI: 10.1016/j.burns.2022.05.011.
    [3]
    ZuoKJ, MedinaA, TredgetEE. Important developments in burn care[J]. Plast Reconstr Surg, 2017,139(1):120e-138e. DOI: 10.1097/PRS.0000000000002908.
    [4]
    邓雪. 不同浓度自体富血小板血浆治疗慢性难愈性创面的临床效果研究[J]. 中国全科医学, 2021, 24(Suppl 2):S62-S64.
    [5]
    胡建武, 任继魁, 孙晶洁, 等. 自体富血小板血浆联合负压封闭引流治疗糖尿病足溃疡的临床观察[J].中华烧伤杂志,2017,33(1):46-48. DOI: 10.3760/cma.j.issn.1009-2587.2017.01.011.
    [6]
    KaoYC, LinDZ, LeeSL, et al. Assisted therapy with platelet-rich plasma for burn patients: a meta-analysis and systematic review[J]. Burns, 2021,47(5):1012-1023. DOI: 10.1016/j.burns.2020.11.005.
    [7]
    张鹏, 原莉莉, 罗佳, 等. 严重烧伤患者Meek植皮术后皮片存活情况的影响因素及其预测价值[J].中华烧伤杂志,2021,37(3):243-249. DOI: 10.3760/cma.j.cn501120-20201127-00503.
    [8]
    中华医学会烧伤外科学分会MEEK植皮技术中心协作组, 海军军医大学第一附属医院烧伤外科,全军烧伤研究所. MEEK微型皮片移植技术临床操作规范[J].中华烧伤杂志,2019,35(8):561-564. DOI: 10.3760/cma.j.issn.1009-2587.2019.08.001.
    [9]
    KlosováH, StětinskýJ, BryjováI, et al. Objective evaluation of the effect of autologous platelet concentrate on post-operative scarring in deep burns[J]. Burns, 2013,39(6):1263-1276. DOI: 10.1016/j.burns.2013.01.020.
    [10]
    狄海萍, 牛希华, 李强, 等. Meek植皮在不同年龄段大面积深度烧伤患者中的应用效果[J].中华烧伤杂志,2017,33(3):156-159. DOI: 10.3760/cma.j.issn.1009-2587.2017.03.006.
    [11]
    张高飞, 刘文军, 王迪, 等. 微粒皮和Meek微型皮片移植修复大面积深度烧伤创面临床效果的荟萃分析[J].中华烧伤杂志,2020,36(7):560-567. DOI: 10.3760/cma.j.cn501120-20190521-00249.
    [12]
    HouschyarKS, TapkingC, NietzschmannI, et al. Five years experience with meek grafting in the management of extensive burns in an adult burn center[J]. Plast Surg (Oakv), 2019,27(1):44-48. DOI: 10.1177/2292550318800331.
    [13]
    LumentaDB, KamolzLP, FreyM. Adult burn patients with more than 60% TBSA involved-Meek and other techniques to overcome restricted skin harvest availability--the Viennese Concept[J]. J Burn Care Res, 2009,30(2):231-242. DOI: 10.1097/BCR.0b013e318198a2d6.
    [14]
    LeeSZ, HalimAS. Superior long term functional and scar outcome of Meek micrografting compared to conventional split thickness skin grafting in the management of burns[J]. Burns, 2019,45(6):1386-1400. DOI: 10.1016/j.burns.2019.04.011.
    [15]
    李兴照, 蔡晨, 徐庆连, 等. 重度烧伤患儿Meek微型皮片移植失败的原因及治疗措施[J].中华烧伤杂志,2019,35(7):525-531. DOI: 10.3760/cma.j.issn.1009-2587.2019.07.009.
    [16]
    RodeH, MartinezR, PotgieterD, et al. Experience and outcomes of micrografting for major paediatric burns[J]. Burns, 2017,43(5):1103-1110. DOI: 10.1016/j.burns.2017.02.008.
    [17]
    ZhangF, LineaweaverW. Acute and sustained effects of vascular endothelial growth factor on survival of flaps and skin grafts[J]. Ann Plast Surg, 2011,66(5):581-582. DOI: 10.1097/SAP.0b013e3182057376.
    [18]
    XuP, WuY, ZhouL, et al. Platelet-rich plasma accelerates skin wound healing by promoting re-epithelialization[J/OL]. Burns Trauma, 2020,8:tkaa028[2023-11-24].https://pubmed.ncbi.nlm.nih.gov/32821743/. DOI: 10.1093/burnst/tkaa028.
    [19]
    GuillibertC, CharpinC, RaffrayM, et al. Single injection of high volume of autologous pure PRP provides a significant improvement in knee osteoarthritis: a prospective routine care study [J]. Int J Mol Sci, 2019, 20(6):1327-1335.DOI: 10.3390/ijms20061327.
    [20]
    DaiZ, LouX, ShenT, et al. Combination of ablative fractional carbon dioxide laser and platelet-rich plasma treatment to improve hypertrophic scars: a retrospective clinical observational study[J/OL]. Burns Trauma, 2021,9:tkab016[2023-11-24]. https://pubmed.ncbi.nlm.nih.gov/34337088/. DOI: 10.1093/burnst/tkab016.
    [21]
    TianJ, ChengLH, CuiX, et al. Application of standardized platelet-rich plasma in elderly patients with complex wounds[J]. Wound Repair Regen, 2019,27(3):268-276. DOI: 10.1111/wrr.12702.
    [22]
    MarckRE, GardienK, VligM, et al. Growth factor quantification of platelet-rich plasma in burn patients compared to matched healthy volunteers[J]. Int J Mol Sci, 2019,20(2):288. DOI: 10.3390/ijms20020288.
    [23]
    GentileP, CalabreseC, De AngelisB, et al. Impact of the differentpreparation methods to obtain autologous non-activated platelet-rich plasma (A-PRP) and activated platelet-rich plasma (AA-PRP) in plastic surgery: wound healing and hair regrowth evaluation [J]. Int J Mol Sci, 2020, 21(2):431-439. DOI: 10.3390/ijms21020431.
    [24]
    杨思思, 肖承志. 自体富血小板血浆对烧伤创面治疗影响的研究进展[J].中华烧伤杂志,2018,34(12):910-913. DOI: 10.3760/cma.j.issn.1009-2587.2018.12.017.
    [25]
    El-TaiebMA, IbrahimHM, HegazyEM, et al. Fractional erbium-YAG laser and platelet-rich plasma as single or combined treatment for atrophic acne scars: a randomized clinical trial[J]. Dermatol Ther (Heidelb), 2019,9(4):707-717. DOI: 10.1007/s13555-019-00318-1.
    [26]
    YamaguchiR, TerashimaH, YoneyamaS, et al. Effects of platelet-rich plasma on intestinal anastomotic healing in rats: PRP concentration is a key factor[J]. J Surg Res, 2012,173(2):258-266. DOI: 10.1016/j.jss.2010.10.001.
    [27]
    NiuWZ, WangPL, GeSH, et al. Effects of platelet concentrates used in alveolar ridge preservation: a systematic review [J]. Implant Dent, 2018, 27(4):498-506. DOI: 10.1097/ID.0000000000000797.
    [28]
    ZhangX, YaoD, ZhaoWY, et al. Engineering platelet-rich plasma based dual-network hydrogel as a bioactive wound dressing with potential clinical translational value[J]. Adv Funct Mater, 2021, 31(8):2009258. DOI: 10.1002/adfm.202009258.
    [29]
    ZhaoM, WangJ, ZhangJ, et al. Functionalizing multi-component bioink with platelet-rich plasma for customized in-situ bilayer bioprinting for wound healing[J]. Mater Today Bio, 2022,16:100334. DOI: 10.1016/j.mtbio.2022.100334.
    [30]
    WeiS, XuP, YaoZ, et al. A composite hydrogel with co-delivery of antimicrobial peptides and platelet-rich plasma to enhance healing of infected wounds in diabetes[J]. Acta Biomater, 2021,124:205-218. DOI: 10.1016/j.actbio.2021.01.046.
    [31]
    郑健生, 刘胜利, 彭晓菁, 等. 自体富血小板血浆联合Meek微型皮片修复严重烧伤患者四肢创面的效果及其机制的前瞻性研究[J].中华烧伤杂志,2021,37(8):731-737. DOI: 10.3760/cma.j.cn501120-20200427-00241.
    [32]
    GuptaS, GoilP, ThakuraniS. Autologous platelet rich plasma as a preparative for resurfacing burn wounds with split thickness skin grafts[J]. World J Plast Surg, 2020,9(1):29-32. DOI: 10.29252/wjps.9.1.29.
    [33]
    ShaoS, PanR, ChenY. Autologous platelet-rich plasma for diabetic foot ulcer[J]. Trends Endocrinol Metab, 2020,31(12):885-890. DOI: 10.1016/j.tem.2020.10.003.
    [34]
    ZhengW, ZhaoDL, ZhaoYQ, et al. Effectiveness of platelet rich plasma in burn wound healing: a systematic review and meta-analysis[J]. J Dermatolog Treat, 2022,33(1):131-137. DOI: 10.1080/09546634.2020.1729949.
    [35]
    García-SánchezJM, Mirabet LisV, Ruiz-VallsA, et al. Platelet rich plasma and plasma rich in growth factors for split-thickness skin graft donor site treatment in the burn patient setting: a randomized clinical trial[J]. Burns, 2022,48(7):1662-1670. DOI: 10.1016/j.burns.2021.10.001.
    [36]
    刘鲁冰, 文辉才, 黄进军, 等. 富血小板血液制品联合生物材料在创面修复中的应用研究进展[J].中华烧伤杂志,2021,37(4):395-400. DOI: 10.3760/cma.j.cn501120-20200531-00291.
  • 张婷.mp4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(3)  / Tables(2)

    Article Metrics

    Article views (22) PDF downloads(2) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return