| Citation: | Gan WJ,Wang JR,He J,et al.Two-sample Mendelian randomization analysis of the causal relationship between human immune cell phenotypes and keloids[J].Chin J Burns Wounds,2025,41(1):84-93.DOI: 10.3760/cma.j.cn501225-20231130-00219. |
| [1] |
雷继安,周圆,秦泽莲.炎症反应参与瘢痕疙瘩形成的研究进展[J].中华烧伤杂志,2021,37(6):591-595.DOI: 10.3760/cma.j.cn501120-20200312-00154.
|
| [2] |
OgawaR,AkitaS,AkaishiS,et al.Diagnosis and treatment of keloids and hypertrophic scars-Japan Scar Workshop consensus document 2018[J/OL].Burns Trauma,2019,7:39[2023-11-30]. https://pubmed.ncbi.nlm.nih.gov/31890718/.DOI: 10.1186/s41038-019-0175-y.
|
| [3] |
贾赤宇,陈泠西.瘢痕疙瘩的肿瘤特征[J].中华烧伤杂志,2021,37(4):301-305.DOI: 10.3760/cma.j.cn501120-20200529-00289.
|
| [4] |
WangZC,ZhaoWY,CaoY,et al.The roles of inflammation in keloid and hypertrophic scars[J].Front Immunol,2020,11:603187.DOI: 10.3389/fimmu.2020.603187.
|
| [5] |
LeeAR,LeeSY,ChoiJW,et al.Establishment of a humanized mouse model of keloid diseases following the migration of patient immune cells to the lesion: patient-derived keloid xenograft (PDKX) model[J].Exp Mol Med,2023,55(8):1713-1719.DOI: 10.1038/s12276-023-01045-6.
|
| [6] |
HellwegeJN,RussellSB,WilliamsSM,et al.Gene-based evaluation of low-frequency variation and genetically-predicted gene expression impacting risk of keloid formation[J].Ann Hum Genet,2018,82(4):206-215.DOI: 10.1111/ahg.12245.
|
| [7] |
YinX,BuW,FangF,et al.Keloid biomarkers and their correlation with immune infiltration[J].Front Genet,2022,13:784073.DOI: 10.3389/fgene.2022.784073.
|
| [8] |
XuH,ZhuZ,HuJ,et al.Downregulated cytotoxic CD8+ T-cell identifies with the NKG2A-soluble HLA-E axis as a predictive biomarker and potential therapeutic target in keloids[J].Cell Mol Immunol,2022,19(4):527-539.DOI: 10.1038/s41423-021-00834-1.
|
| [9] |
JinQ,GuiL,NiuF,et al.Macrophages in keloid are potent at promoting the differentiation and function of regulatory T cells[J].Exp Cell Res,2018,362(2):472-476.DOI: 10.1016/j.yexcr.2017.12.011.
|
| [10] |
LeeCC,TsaiCH,ChenCH,et al.An updated review of the immunological mechanisms of keloid scars[J].Front Immunol,2023,14:1117630.DOI: 10.3389/fimmu.2023.1117630.
|
| [11] |
DaviesNM,HolmesMV,Davey SmithG.Reading Mendelian randomisation studies: a guide, glossary, and checklist for clinicians[J].BMJ,2018,362:k601.DOI: 10.1136/bmj.k601.
|
| [12] |
SandersonE,GlymourMM,HolmesMV,et al. Mendelian randomization[J].Nat Rev Methods Primers,2022,2:6.DOI: 10.1038/s43586-021-00092-5.
|
| [13] |
Gagliano TaliunSA,EvansDM.Ten simple rules for conducting a mendelian randomization study[J].PLoS Comput Biol,2021,17(8):e1009238.DOI: 10.1371/journal.pcbi.1009238.
|
| [14] |
OrrùV,SteriM,SidoreC,et al.Complex genetic signatures in immune cells underlie autoimmunity and inform therapy[J].Nat Genet,2020,52(10):1036-1045.DOI: 10.1038/s41588-020-0684-4.
|
| [15] |
SidoreC,BusoneroF,MaschioA,et al.Genome sequencing elucidates Sardinian genetic architecture and augments association analyses for lipid and blood inflammatory markers[J].Nat Genet,2015,47(11):1272-1281.DOI: 10.1038/ng.3368.
|
| [16] |
SakaueS,KanaiM,TanigawaY,et al.A cross-population atlas of genetic associations for 220 human phenotypes[J].Nat Genet,2021,53(10):1415-1424.DOI: 10.1038/s41588-021-00931-x.
|
| [17] |
LvX,HuZ,LiangF,et al.Causal relationship between ischemic stroke and its subtypes and frozen shoulder: a two-sample Mendelian randomization analysis[J].Front Neurol,2023,14:1178051.DOI: 10.3389/fneur.2023.1178051.
|
| [18] |
BurgessS,ThompsonSG,Genetics CollaborationCRP CHD.Avoiding bias from weak instruments in Mendelian randomization studies[J].Int J Epidemiol,2011,40(3):755-764.DOI: 10.1093/ije/dyr036.
|
| [19] |
BurgessS,ThompsonSG.Interpreting findings from Mendelian randomization using the MR-Egger method[J].Eur J Epidemiol,2017,32(5):377-389.DOI: 10.1007/s10654-017-0255-x.
|
| [20] |
GauglitzGG,KortingHC,PavicicT,et al.Hypertrophic scarring and keloids: pathomechanisms and current and emerging treatment strategies[J].Mol Med,2011,17(1/2):113-125.DOI: 10.2119/molmed.2009.00153.
|
| [21] |
BurgessS,ButterworthA,ThompsonSG.Mendelian randomization analysis with multiple genetic variants using summarized data[J].Genet Epidemiol,2013,37(7):658-665.DOI: 10.1002/gepi.21758.
|
| [22] |
YangWY,ShaoY,Lopez-PastranaJ,et al.Pathological conditions re-shape physiological Tregs into pathological Tregs[J/OL].Burns Trauma,2015,3(1):1[2023-11-30].https://pubmed.ncbi.nlm.nih.gov/26623425/.DOI: 10.1186/s41038-015-0001-0.
|
| [23] |
MuraoN,SeinoK,HayashiT,et al.Treg-enriched CD4+ T cells attenuate collagen synthesis in keloid fibroblasts[J].Exp Dermatol,2014,23(4):266-271.DOI: 10.1111/exd.12368.
|
| [24] |
ShortWD,WangX,KeswaniSG.The role of T lymphocytes in cutaneous scarring[J].Adv Wound Care (New Rochelle),2022,11(3):121-131.DOI: 10.1089/wound.2021.0059.
|
| [25] |
ChenY,JinQ,FuX,et al.Connection between T regulatory cell enrichment and collagen deposition in keloid[J].Exp Cell Res,2019,383(2):111549.DOI: 10.1016/j.yexcr.2019.111549.
|
| [26] |
TianY,BaborM,LaneJ,et al.Unique phenotypes and clonal expansions of human CD4 effector memory T cells re-expressing CD45RA[J].Nat Commun,2017,8(1):1473.DOI: 10.1038/s41467-017-01728-5.
|
| [27] |
CheungJ,ZahorowskaB,SuranyiM,et al.CD4+CD25+ T regulatory cells in renal transplantation[J].Front Immunol,2022,13:1017683.DOI: 10.3389/fimmu.2022.1017683.
|
| [28] |
HarrisF,BerdugoYA,TreeT.IL-2-based approaches to Treg enhancement[J].Clin Exp Immunol,2023,211(2):149-163.DOI: 10.1093/cei/uxac105.
|
| [29] |
AbbasAK,TrottaE,Simeonov DR,et al.Revisiting IL-2: biology and therapeutic prospects[J].Sci Immunol,2018,3(25):eaat1482.DOI: 10.1126/sciimmunol.aat1482.
|
| [30] |
LykhopiyV,MalviyaV,Humblet-BaronS,et al.IL-2 immunotherapy for targeting regulatory T cells in autoimmunity[J].Genes Immun,2023,24(5):248-262.DOI: 10.1038/s41435-023-00221-y.
|
| [31] |
ShanM,LiuH,HaoY,et al.The role of CD28 and CD8+ T cells in keloid development[J].Int J Mol Sci,2022,23(16):8862.DOI: 10.3390/ijms23168862.
|
| [32] |
ChenZ,ZhouL,WonT,et al.Characterization of CD45RO+ memory T lymphocytes in keloid disease[J].Br J Dermatol,2018,178(4):940-950.DOI: 10.1111/bjd.16173.
|
| [33] |
TannoH,KawakamiK,KannoE,et al.Invariant NKT cells promote skin wound healing by preventing a prolonged neutrophilic inflammatory response[J].Wound Repair Regen,2017,25(5):805-815.DOI: 10.1111/wrr.12588.
|
| [34] |
SîrbulescuRF,BoehmCK,SoonE,et al.Mature B cells accelerate wound healing after acute and chronic diabetic skin lesions[J].Wound Repair Regen,2017,25(5):774-791.DOI: 10.1111/wrr.12584.
|
| [35] |
AndersonJB,HarrantAB,Navarro-AlvarezN,et al. 4371 The role of B cells in keloid formation[J]. J Clin Transl Sci,2020, 4(Suppl 1):S18-19. DOI: 10.1017/cts.2020.97.
|
| [36] |
ShanM,WangY.Viewing keloids within the immune microenvironment[J].Am J Transl Res,2022,14(2):718-727.
|
| [37] |
RathM,PitiotA,KirrM,et al.Multi-antigen imaging reveals inflammatory DC, ADAM17 and Neprilysin as effectors in keloid formation[J].Int J Mol Sci,2021,22(17):9417.DOI: 10.3390/ijms22179417.
|
| [38] |
CalventeCJ,TamedaM,JohnsonCD,et al.Neutrophils contribute to spontaneous resolution of liver inflammation and fibrosis via microRNA-223[J].J Clin Invest,2019,129(10):4091-4109.DOI: 10.1172/JCI122258.
|
| [39] |
SaijouE,EnomotoY,MatsudaM,et al.Neutrophils alleviate fibrosis in the CCl4-induced mouse chronic liver injury model[J].Hepatol Commun,2018,2(6):703-717.DOI: 10.1002/hep4.1178.
|
| [40] |
ShaoY,GuoZ,YangY,et al.Neutrophil extracellular traps contribute to myofibroblast differentiation and scar hyperplasia through the Toll-like receptor 9/nuclear factor Kappa-B/interleukin-6 pathway[J/OL].Burns Trauma,2022,10:tkac044[2023-11-30].https://pubmed.ncbi.nlm.nih.gov/36406661/.DOI: 10.1093/burnst/tkac044.
|