| Citation: | Zhao Siyuan, Li Wei, Kong Weishi, et al. Research advances on the application of skin organoids in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(7): 703-707. Doi: 10.3760/cma.j.cn501225-20240901-00323 |
| [1] |
Harris-Tryon TA, Grice EA. Microbiota and maintenance of skin barrier function[J]. Science, 2022, 376(6596): 940-945. DOI: 10.1126/science.abo0693.
|
| [2] |
Chen R, Zhu Z, Ji S, et al. Sweat gland regeneration: current strategies and future opportunities[J]. Biomaterials, 2020, 255: 120201. DOI: 10.1016/j.biomaterials.2020.120201.
|
| [3] |
Shang Y, Li M, Zhang L, et al. Exosomes derived from mouse vibrissa dermal papilla cells promote hair follicle regeneration during wound healing by activating Wnt/β -catenin signaling pathway[J]. J Nanobiotechnology, 2024, 22(1): 425. DOI: 10.1186/s12951-024-02689-w.
|
| [4] |
Shamloul G, Khachemoune A. An updated review of the sebaceous gland and its role in health and diseases part 1: embryology, evolution, structure, and function of sebaceous glands[J]. Dermatol Ther, 2021, 34(1): e14695. DOI: 10.1111/dth.14695.
|
| [5] |
Freedman BR, Hwang C, Talbot S, et al. Breakthrough treatments for accelerated wound healing[J]. Sci Adv, 2023, 9(20): eade7007. DOI: 10.1126/sciadv.ade7007.
|
| [6] |
彭雨, 孟浩, 李品学, 等. 基于干细胞的组织工程修复材料促进体表慢性难愈合创面愈合的研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(3): 290-295. DOI: 10.3760/cma.j.cn501225-20220407-00126.
|
| [7] |
Kolimi P, Narala S, Nyavanandi D, et al. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements[J]. Cells, 2022, 11(15): 2439. DOI: 10.3390/cells11152439.
|
| [8] |
Sen CK. Human wound and its burden: updated 2022 compendium of estimates[J]. Adv Wound Care (New Rochelle), 2023, 12(12): 657-670. DOI: 10.1089/wound.2023.0150.
|
| [9] |
罗高兴, 周璇. 先进生物材料在创面修复中的应用[J]. 中华烧伤与创面修复杂志, 2024, 40(1): 26-32. DOI: 10.3760/cma.j.cn501225-20231128-00211.
|
| [10] |
Mony MP, Harmon KA, Hess R, et al. An updated review of hypertrophic scarring[J]. Cells, 2023, 12(5): 678. DOI: 10.3390/cells12050678.
|
| [11] |
Jeschke MG, Wood FM, Middelkoop E, et al. Scars[J]. Nat Rev Dis Primers, 2023, 9(1): 64. DOI: 10.1038/s41572-023-00474-x.
|
| [12] |
Farahani M, Shafiee A. Wound healing: from passive to smart dressings[J]. Adv Healthc Mater, 2021, 10(16): e2100477. DOI: 10.1002/adhm.202100477.
|
| [13] |
Dai C, Shih S, Khachemoune A. Skin substitutes for acute and chronic wound healing: an updated review[J]. J Dermatolog Treat, 2020, 31(6): 639-648. DOI: 10.1080/09546634.2018.1530443.
|
| [14] |
Weng T, Wu P, Zhang W, et al. Regeneration of skin appendages and nerves: current status and further challenges[J]. J Transl Med, 2020, 18(1): 53. DOI: 10.1186/s12967-020-02248-5.
|
| [15] |
Kohlhauser M, Luze H, Nischwitz SP, et al. Historical evolution of skin grafting-a journey through time[J]. Medicina (Kaunas), 2021, 57(4): 348. DOI: 10.3390/medicina57040348.
|
| [16] |
He J, Zhang X, Xia X, et al. Organoid technology for tissue engineering[J]. J Mol Cell Biol, 2020, 12(8): 569-579. DOI: 10.1093/jmcb/mjaa012.
|
| [17] |
Hong ZX, Zhu ST, Li H, et al. Bioengineered skin organoids: from development to applications[J]. Mil Med Res, 2023, 10(1): 40. DOI: 10.1186/s40779-023-00475-7.
|
| [18] |
Lee J, Koehler KR. Skin organoids: a new human model for developmental and translational research[J]. Exp Dermatol, 2021, 30(4): 613-620. DOI: 10.1111/exd.14292.
|
| [19] |
Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells[J]. Cell, 1975, 6(3): 331-343. DOI: 10.1016/s0092-8674(75)80001-8.
|
| [20] |
Gallico GG, O'Connor NE, Compton CC, et al. Permanent coverage of large burn wounds with autologous cultured human epithelium[J]. N Engl J Med, 1984, 311(7): 448-451. DOI: 10.1056/NEJM198408163110706.
|
| [21] |
Green H, Kehinde O, Thomas J. Growth of cultured human epidermal cells into multiple epithelia suitable for grafting [J]. Proc Natl Acad Sci U S A, 1979, 76(11): 5665-5668. DOI: 10.1073/pnas.76.11.5665.
|
| [22] |
Dubertret L. Reconstruction of the human skin equivalent in vitro: a new tool for skin biology[J]. Skin Pharmacol, 1990, 3(2): 144-148. DOI: 10.1159/000210861.
|
| [23] |
Guo Z, Higgins CA, Gillette BM, et al. Building a microphysiological skin model from induced pluripotent stem cells[J]. Stem Cell Res Ther, 2013, 4 Suppl 1(Suppl 1): S2. DOI: 10.1186/scrt363.
|
| [24] |
Itoh M, Kiuru M, Cairo MS, et al. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells[J]. Proc Natl Acad Sci U S A, 2011, 108(21): 8797-8802. DOI: 10.1073/pnas.1100332108.
|
| [25] |
Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872. DOI: 10.1016/j.cell.2007.11.019.
|
| [26] |
Loh YH, Agarwal S, Park IH, et al. Generation of induced pluripotent stem cells from human blood[J]. Blood, 2009, 113(22): 5476-5479. DOI: 10.1182/blood-2009-02-204800.
|
| [27] |
Itoh M, Umegaki-Arao N, Guo Z, et al. Generation of 3D skin equivalents fully reconstituted from human induced pluripotent stem cells (iPSCs)[J]. PLoS One, 2013, 8(10): e77673. DOI: 10.1371/journal.pone.0077673.
|
| [28] |
Kim Y, Park N, Rim YA, et al. Establishment of a complex skin structure via layered co-culture of keratinocytes and fibroblasts derived from induced pluripotent stem cells[J]. Stem Cell Res Ther, 2018, 9(1): 217. DOI: 10.1186/s13287-018-0958-2.
|
| [29] |
Kim Y, Ju JH. Generation of 3D skin organoid from cord blood-derived induced pluripotent stem cells[J]. J Vis Exp, 2019(146): e59297. DOI: 10.3791/59297.
|
| [30] |
Feldman A, Mukha D, Maor II, et al. Blimp1+ cells generate functional mouse sebaceous gland organoids in vitro[J]. Nat Commun, 2019, 10(1): 2348. DOI: 10.1038/s41467-019-10261-6.
|
| [31] |
Diao J, Liu J, Wang S, et al. Sweat gland organoids contribute to cutaneous wound healing and sweat gland regeneration [J]. Cell Death Dis, 2019, 10(3): 238. DOI: 10.1038/s41419-019-1485-5.
|
| [32] |
Lee J, Rabbani CC, Gao H, et al. Hair-bearing human skin generated entirely from pluripotent stem cells[J]. Nature, 2020, 582(7812): 399-404. DOI: 10.1038/s41586-020-2352-3.
|
| [33] |
Jung SY, You HJ, Kim MJ, et al. Wnt-activating human skin organoid model of atopic dermatitis induced by Staphylococcus aureus and its protective effects by Cutibacterium acnes[J]. iScience, 2022, 25(10): 105150. DOI: 10.1016/j.isci.2022.105150.
|
| [34] |
Shafiee A, Sun J, Ahmed IA, et al. Development of physiologically relevant skin organoids from human induced pluripotent stem cells[J]. Small, 2024, 20(16): e2304879. DOI: 10.1002/smll.202304879.
|
| [35] |
Lei M, Schumacher LJ, Lai YC, et al. Self-organization process in newborn skin organoid formation inspires strategy to restore hair regeneration of adult cells[J]. Proc Natl Acad Sci U S A, 2017, 114(34): E7101-E7110. DOI: 10.1073/pnas.1700475114.
|
| [36] |
Ebner-Peking P, Krisch L, Wolf M, et al. Self-assembly of differentiated progenitor cells facilitates spheroid human skin organoid formation and planar skin regeneration[J]. Theranostics, 2021, 11(17): 8430-8447. DOI: 10.7150/thno.59661.
|
| [37] |
Hosseini M, Koehler KR, Shafiee A. Biofabrication of human skin with its appendages[J]. Adv Healthc Mater, 2022, 11(22): e2201626. DOI: 10.1002/adhm.202201626.
|
| [38] |
Šuca H, Čoma M, Tomšů J, et al. Current approaches to wound repair in burns: how far have we come from cover to close? A narrative review[J]. J Surg Res, 2024, 296: 383-403. DOI: 10.1016/j.jss.2023.12.043.
|
| [39] |
Sandoval AGW, Gim KY, Huang JT, et al. Applications of human pluripotent stem cell-derived skin organoids in dermatology[J]. J Invest Dermatol, 2023, 143(10): 1872-1876. DOI: 10.1016/j.jid.2023.07.017.
|
| [40] |
Ma J, Li W, Cao R, et al. Application of an iPSC-derived organoid model for localized scleroderma therapy[J]. Adv Sci (Weinh), 2022, 9(16): e2106075. DOI: 10.1002/advs.202106075.
|
| [41] |
Wang W, Liu P, Zhu W, et al. Skin organoid transplantation promotes tissue repair with scarless in frostbite[J]. Protein Cell, 2025, 16(4): 240-259. DOI: 10.1093/procel/pwae055.
|
| [42] |
Zhang T, Sheng S, Cai W, et al. 3-D bioprinted human-derived skin organoids accelerate full-thickness skin defects repair [J]. Bioact Mater, 2024, 42: 257-269. DOI: 10.1016/j.bioactmat.2024.08.036.
|
| [43] |
Aisenbrey EA, Murphy WL. Synthetic alternatives to Matrigel [J]. Nat Rev Mater, 2020, 5(7): 539-551. DOI: 10.1038/s41578-020-0199-8.
|
| [44] |
Kaur S, Kaur I, Rawal P, et al. Non-matrigel scaffolds for organoid cultures[J]. Cancer Lett, 2021, 504: 58-66. DOI: 10.1016/j.canlet.2021.01.025.
|
| [45] |
Zhao Z, Chen X, Dowbaj AM, et al. Organoids[J]. Nat Rev Methods Primers, 2022, 2: 94. DOI: 10.1038/s43586-022-00174-y.
|
| [46] |
Wang M, Zhou X, Zhou S, et al. Mechanical force drives the initial mesenchymal-epithelial interaction during skin organoid development[J]. Theranostics, 2023, 13(9): 2930- 2945. DOI: 10.7150/thno.83217.
|
| [47] |
Li Z, Tan J, Zhou C, et al. Spatiotemporal adaptations-driven dynamic thra activation simulates a skin wound healing response[J/OL]. Adv Sci (Weinh), 2025: e06651(2025-06-25)[2025-06-26].
|
| [48] |
Zhou R, Luo X, Chen S, et al. Innovative approaches in skin therapy: the rise of organoid cultivation[J]. Chem Eng J, 2025, 512: 162248. DOI: 10.1016/j.cej.2025.162248.
|