| Citation: | Ma Hao, Min Peiru, Zhang Yixin, et al. Effects and mechanisms of capsaicin on full-thickness skin defects in diabetic mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(7): 645-654. Doi: 10.3760/cma.j.cn501225-20250210-00055 |
| [1] |
夏如意, 唐棣, 杨斌. 丹参联合罗沙司他对糖尿病大鼠全层皮肤缺损创面愈合的影响及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(4): 380-388. DOI: 10.3760/cma.j.cn501225-20231020-00124.
|
| [2] |
Xu J, Zhang H, Ye H. Research progress on the role of fascia in skin wound healing[J/OL]. Burns Trauma, 2025, 13: tkaf002[2025-02-10].
|
| [3] |
中华医学会糖尿病学分会. 中国2型糖尿病防治指南(2020年版)[J]. 国际内分泌代谢杂志, 2021, 41(5): 482-548. DOI: 10.3760/cma.j.cn121383-20210825-08063.
|
| [4] |
Deng S, Tai Y, Liu C, et al. Multifunctional microneedle-mediated photothermo-gas-ion synergic therapy accelerates MRSA infacted diabetic wound healing [J]. Mater Today Bio, 2025, 32: 101903. DOI: 10.1016/j.mtbio.2025.101903.
|
| [5] |
Wang F, Yao J, Zuo H, et al. Diverse-origin exosomes therapeutic strategies for diabetic wound healing[J]. Int J Nanomedicine, 2025, 20: 7375-7402. DOI: 10.2147/IJN.S519379.
|
| [6] |
Theocharidis G, Thomas BE, Sarkar D, et al. Single cell transcriptomic landscape of diabetic foot ulcers[J]. Nat Commun, 2022, 13(1): 181. DOI: 10.1038/s41467-021-27801-8.
|
| [7] |
Prabhakar V, Gupta D, Kanade P, et al. Diabetes-associated depression: the serotonergic system as a novel multifunctional target[J]. Indian J Pharmacol, 2015, 47(1): 4-10. DOI: 10.4103/0253-7613.150305.
|
| [8] |
Halabi J, Tarshoby M. Current situation and progress of diabetic foot care in the Middle East and North Africa region[J]. Diabetes Res Clin Pract, 2025, 226: 112318. DOI: 10.1016/j.diabres.2025.112318.
|
| [9] |
Baltzis D, Eleftheriadou I, Veves A. Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights[J]. Adv Ther, 2014, 31(8): 817-836. DOI: 10.1007/s12325-014-0140-x.
|
| [10] |
Botusan IR, Sunkari VG, Savu O, et al. Stabilization of HIF-1alpha is critical to improve wound healing in diabetic mice[J]. Proc Natl Acad Sci U S A, 2008, 105(49): 19426-19431. DOI: 10.1073/pnas.0805230105.
|
| [11] |
蒋能, 汤春丽, 吴慧娴, 等. 辣椒素药理活性及其药物代谢动力学的研究进展[J]. 天然产物研究与开发, 2022, 34(9): 1597-1606. DOI: 10.16333/j.1001-6880.2022.9.017.
|
| [12] |
Zhang Y, Shannonhouse J, Son H, et al. Regulatory action of calcium and calcium channels in pain pathways[J]. Int J Biol Sci, 2025, 21(8): 3726-3739. DOI: 10.7150/ijbs.110504.
|
| [13] |
Wang J, Zhang L, Zheng K. Efficacy of capsaicin for non-allergic rhinitis: an updated systematic review and meta-analysis[J]. Clin Rev Allergy Immunol, 2024, 67(1/2/3): 40-46. DOI: 10.1007/s12016-024-09005-2.
|
| [14] |
O'Leary C, McGahon MK, Ashraf S, et al. Involvement of TRPV1 and TRPV4 channels in retinal angiogenesis[J]. Invest Ophthalmol Vis Sci, 2019, 60(10): 3297-3309. DOI: 10.1167/iovs.18-26344.
|
| [15] |
Chen Y, Lei K, Li Y, et al. Synergistic effects of NO/H2S gases on antibacterial, anti-inflammatory, and analgesic properties in oral ulcers using a gas-releasing nanoplatform[J]. Acta Biomater, 2025, 194: 288-304. DOI: 10.1016/j.actbio.2025.01.013.
|
| [16] |
Chen YS, Lu MJ, Huang HS, et al. Mechanosensitive transient receptor potential vanilloid type 1 channels contribute to vascular remodeling of rat fistula veins[J]. J Vasc Surg, 2010, 52(5): 1310-1320. DOI: 10.1016/j.jvs.2010.05.095.
|
| [17] |
Zhu Z, Jiang Y, Li Z, et al. Sensory neuron transient receptor potential vanilloid-1 channel regulates angiogenesis through CGRP in vivo[J]. Front Bioeng Biotechnol, 2024, 12: 1338504. DOI: 10.3389/fbioe.2024.1338504.
|
| [18] |
Kotoda Y, Hishiyama S, Shim J, et al. A novel quaternary ammonium N-propylamiodarone bromide provides long-lasting analgesia against corneal pain[J]. Drug Des Devel Ther, 2024, 18: 6199-6208. DOI: 10.2147/DDDT.S486031.
|
| [19] |
Chen S, Wang H, Du J, et al. Near-infrared light-activatable, analgesic nanocomposite delivery system for comprehensive therapy of diabetic wounds in rats[J]. Biomaterials, 2024, 305: 122467. DOI: 10.1016/j.biomaterials.2024.122467.
|
| [20] |
Li X, Yuan D, Zhang P, et al. A neuron-mast cell axis regulates skin microcirculation in diabetes[J]. Diabetes, 2024, 73(10): 1728-1741. DOI: 10.2337/db23-0862.
|
| [21] |
Okada Y, Sumioka T, Reinach PS, et al. Roles of epithelial and mesenchymal TRP channels in mediating inflammatory fibrosis[J]. Front Immunol, 2021, 12: 731674. DOI: 10.3389/fimmu.2021.731674.
|
| [22] |
Yu Q, Shen Y, Xiao F, et al. Yuhong ointment ameliorates inflammatory responses and wound healing in scalded mice[J]. J Ethnopharmacol, 2023, 306: 116118. DOI: 10.1016/j.jep.2022.116118.
|
| [23] |
Zhou L, Chen L, Li T, et al. Cell-free adipose tissue extracts as a novel treatment for rosacea by downregulating TRPV1[J]. Sci Rep, 2024, 14(1): 21759. DOI: 10.1038/s41598-024-72593-8.
|
| [24] |
Huang CJ, Pu CM, Su SY, et al. Improvement of wound healing by capsaicin through suppression of the inflammatory response and amelioration of the repair process[J]. Mol Med Rep, 2023, 28(2): 155. DOI: 10.3892/mmr.2023.13042.
|
| [25] |
Avishai E, Yeghiazaryan K, Golubnitschaja O. Impaired wound healing: facts and hypotheses for multi-professional considerations in predictive, preventive and personalised medicine[J]. EPMA J, 2017, 8(1): 23-33. DOI: 10.1007/s13167-017-0081-y.
|
| [26] |
Zhang KW, Liu SY, Jia Y, et al. Insight into the role of DPP-4 in fibrotic wound healing[J]. Biomed Pharmacother, 2022, 151: 113143. DOI: 10.1016/j.biopha.2022.113143.
|
| [27] |
Sarkar Z, Singh H, Iqubal MK, et al. Involvement of macromolecules in 3D printing for wound healing management: a narrative review[J]. Int J Biol Macromol, 2024, 282(Pt 3): 136991. DOI: 10.1016/j.ijbiomac.2024.136991.
|
| [28] |
Kaur G, Narayanan G, Garg D, et al. Biomaterials-based regenerative strategies for skin tissue wound healing[J]. ACS Appl Bio Mater, 2022, 5(5): 2069-2106. DOI: 10.1021/acsabm.2c00035.
|
| [29] |
Azari Z, Nazarnezhad S, Webster TJ, et al. Stem cell-mediated angiogenesis in skin tissue engineering and wound healing[J]. Wound Repair Regen, 2022, 30(4): 421-435. DOI: 10.1111/wrr.13033.
|
| [30] |
Wang PH, Huang BS, Horng HC, et al. Wound healing[J]. J Chin Med Assoc, 2018, 81(2): 94-101. DOI: 10.1016/j.jcma.2017.11.002.
|
| [31] |
Woodley DT. Distinct fibroblasts in the papillary and reticular dermis: implications for wound healing[J]. Dermatol Clin, 2017, 35(1): 95-100. DOI: 10.1016/j.det.2016.07.004.
|
| [32] |
Julius D. TRP channels and pain[J]. Annu Rev Cell Dev Biol, 2013, 29: 355-384. DOI: 10.1146/annurev-cellbio-101011-155833.
|
| [33] |
Liao M, Cao E, Julius D, et al. Structure of the TRPV1 ion channel determined by electron cryo-microscopy[J]. Nature, 2013, 504(7478): 107-112. DOI: 10.1038/nature12822.
|
| [34] |
Sumioka T, Okada Y, Reinach PS, et al. Impairment of corneal epithelial wound healing in a TRPV1-deficient mouse[J]. Invest Ophthalmol Vis Sci, 2014, 55(5): 3295-3302. DOI: 10.1167/iovs.13-13077.
|
| [35] |
Liu J, Huang S, Yu R, et al. TRPV1+ sensory nerves modulate corneal inflammation after epithelial abrasion via RAMP1 and SSTR5 signaling[J]. Mucosal Immunol, 2022, 15(5): 867-881. DOI: 10.1038/s41385-022-00533-8.
|
| [36] |
Maiese K. Warming up to new possibilities with the capsaicin receptor TRPV1: mTOR, AMPK, and erythropoietin[J]. Curr Neurovasc Res, 2017, 14(2): 184-189. DOI: 10.2174/1567202614666170313105337.
|
| [37] |
Liang Y, Chen P, Wang S, et al. SCFFBXW5-mediated degradation of AQP3 suppresses autophagic cell death through the PDPK1-AKT-MTOR axis in hepatocellular carcinoma cells[J]. Autophagy, 2024, 20(9): 1984-1999. DOI: 10.1080/15548627.2024.2353497.
|
| [38] |
Mossmann D, Park S, Hall MN. mTOR signalling and cellular metabolism are mutual determinants in cancer[J]. Nat Rev Cancer, 2018, 18(12): 744-757. DOI: 10.1038/s41568-018-0074-8.
|
| [39] |
Van Putte L, De Schrijver S, Moortgat P. The effects of advanced glycation end products (AGEs) on dermal wound healing and scar formation: a systematic review[J]. Scars Burn Heal, 2016, 2: 2059513116676828. DOI: 10.1177/2059513116676828.
|
| [40] |
施彦, 易亮, 张伟强, 等. 黄芩素对糖尿病小鼠全层皮肤缺损创面愈合的影响及其机制[J]. 中华烧伤与创面修复杂志, 2024, 40(11): 1085-1094. DOI: 10.3760/cma.j.cn501225-20231104-00179.
|
| [41] |
农与乐, 吕叶辉. 环状RNA在糖尿病创面愈合中的作用机制研究进展[J]. 中华烧伤与创面修复杂志, 2023, 39(5): 487-490. DOI: 10.3760/cma.j.cn501225-20220727-00317.
|