| Citation: | Liu Shaoyuan, Zhang Yuheng, Huang Rong, et al. Development and performance evaluation of a laser-induced graphene-based multimodal electrochemical sensor for monitoring the burn wound microenvironment[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2025, 41(7): 688-697. Doi: 10.3760/cma.j.cn501225-20250215-00062 |
| [1] |
潘玉雪, 褚继萍, 赵梦圆, 等. 慢性难愈创面微环境响应型水凝胶材料的研究进展[J]. 国际生物医学工程杂志, 2023, 46(2): 151-155. DOI: 10.3760/cma.j.cn121382-20221213-00210.
|
| [2] |
Gonzalez MR, Ducret V, Leoni S, et al. Transcriptome analysis of pseudomonas aeruginosa cultured in human burn wound exudates[J]. Front Cell Infect Microbiol, 2018, 8: 39. DOI: 10.3389/fcimb.2018.00039.
|
| [3] |
Wang H, Duan W, Ren Z, et al. Engineered sandwich-structured composite wound dressings with unidirectional drainage and anti-adhesion supporting accelerated wound healing[J]. Adv Healthc Mater, 2023, 12(8): e2202685. DOI: 10.1002/adhm.202202685.
|
| [4] |
Goto T, Saligan LN. Wound pain and wound healing biomarkers from wound exudate: a scoping review[J]. J Wound Ostomy Continence Nurs, 2020, 47(6): 559-568. DOI: 10.1097/WON.0000000000000703.
|
| [5] |
Shao Z, Yin T, Jiang J, et al. Wound microenvironment self-adaptive hydrogel with efficient angiogenesis for promoting diabetic wound healing[J]. Bioact Mater, 2023, 20: 561-573. DOI: 10.1016/j.bioactmat.2022.06.018.
|
| [6] |
Sharifuzzaman M, Chhetry A, Zahed MA, et al. Smart bandage with integrated multifunctional sensors based on MXene-functionalized porous graphene scaffold for chronic wound care management[J]. Biosens Bioelectron, 2020, 169: 112637. DOI: 10.1016/j.bios.2020.112637.
|
| [7] |
Haller HL, Sander F, Popp D, et al. Oxygen, pH, lactate, and metabolism-how old knowledge and new insights might be combined for new wound treatment[J]. Medicina (Kaunas), 2021, 57(11): 1190. DOI: 10.3390/medicina57111190.
|
| [8] |
吴丽媛, 张晓帅, 卢绮萍. 智能水凝胶结构设计及其在外科医学领域中的应用[J]. 中华实验外科杂志, 2025, 42(2): 388-392. DOI: 10.3760/cma.j.cn421213-20240605-00505.
|
| [9] |
Haaga JR, Haaga R. Acidic lactate sequentially induced lymphogenesis, phlebogenesis, and arteriogenesis (ALPHA) hypothesis: lactate-triggered glycolytic vasculogenesis that occurs in normoxia or hypoxia and complements the traditional concept of hypoxia-based vasculogenesis[J]. Surgery, 2013, 154(3): 632-637. DOI: 10.1016/j.surg.2013.03.007.
|
| [10] |
Morris FC, Jiang Y, Fu Y, et al. Lactate metabolism promotes in vivo fitness during Acinetobacter baumannii infection[J]. FEMS Microbiol Lett, 2024, 371: fnae032. DOI: 10.1093/femsle/fnae032.
|
| [11] |
Ghani QP, Wagner S, Becker HD, et al. Regulatory role of lactate in wound repair[J]. Methods Enzymol, 2004, 381: 565-575. DOI: 10.1016/S0076-6879(04)81036-X.
|
| [12] |
Trabold O, Wagner S, Wicke C, et al. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing[J]. Wound Repair Regen, 2003, 11(6): 504-509. DOI: 10.1046/j.1524-475x.2003.11621.x.
|
| [13] |
Kitamura F, Semba T, Yasuda-Yoshihara N, et al. Cancer-associated fibroblasts reuse cancer-derived lactate to maintain a fibrotic and immunosuppressive microenvironment in pancreatic cancer[J]. JCI Insight, 2023, 8(20): e163022. DOI: 10.1172/jci.insight.163022.
|
| [14] |
蔡程浩, 韩春茂, 王新刚. 创面外部微环境因素对创面愈合影响的研究进展[J]. 中华烧伤与创面修复杂志, 2024, 40(5): 489-494. DOI: 10.3760/cma.j.cn501225-20230827-00067.
|
| [15] |
Wang Y, Miao F, Bai J, et al. An observational study of the pH value during the healing process of diabetic foot ulcer[J]. J Tissue Viability, 2024, 33(2): 208-214. DOI: 10.1016/j.jtv.2024.03.015.
|
| [16] |
Xu Y, Chen H, Fang Y, et al. Hydrogel combined with phototherapy in wound healing[J]. Adv Healthc Mater, 2022, 11(16): e2200494. DOI: 10.1002/adhm.202200494.
|
| [17] |
Wang H, Luo R, Chen Y, et al. A sortase A-immobilized mesoporous hollow carbon sphere-based biosensor for detection of gram-positive bacteria[J]. J Electron Mater, 2018, 47: 4124-4135. DOI: 10.1007/s11664-018-6308-4.
|
| [18] |
Sempionatto JR, Lin M, Yin L, et al. An epidermal patch for the simultaneous monitoring of haemodynamic and metabolic biomarkers[J]. Nat Biomed Eng, 2021, 5(7): 737-748. DOI: 10.1038/s41551-021-00685-1.
|
| [19] |
Xuan X, Chen C, Molinero-Fernandez A, et al. Fully integrated wearable device for continuous sweat lactate monitoring in sports[J]. ACS Sens, 2023, 8(6): 2401-2409. DOI: 10.1021/acssensors.3c00708.
|
| [20] |
Wang H, Zhao Z, Liu P, et al. Laser-induced graphene based flexible electronic devices[J]. Biosensors (Basel), 2022, 12(2): 55. DOI: 10.3390/bios12020055.
|
| [21] |
Baranwal J, Barse B, Gatto G, et al. Electrochemical sensors and their applications: a review[J]. Chemosensors, 2022, 10(9): 363. DOI: 10.3390/chemosensors10090363.
|
| [22] |
梁莉婷, 宋薇, 张超, 等. 原位交联含氧化石墨烯的甲基丙烯酸酐化明胶水凝胶对小鼠全层皮肤缺损创面血管化的影响[J]. 中华烧伤与创面修复杂志, 2022, 38(7): 616-628. DOI: 10.3760/cma.j.cn501225-20220314-00063.
|
| [23] |
刘振刚, 李鹏富, 杨帆, 等. 基于石墨烯相关材料在外周神经损伤修复中的应用[J]. 中华实验外科杂志, 2023, 40(7): 1448-1450. DOI: 10.3760/cma.j.cn421213-20221213-01400.
|
| [24] |
沈冯洁, 曹伟男, 纪哲, 等. 氧化石墨烯调控脂肪源间充质干细胞促进糖尿病皮肤创面修复的实验研究[J]. 中华内分泌代谢杂志, 2023, 39(9): 790-796. DOI: 10.3760/cma.j.cn311282-20220925-00554.
|
| [25] |
Avinash K, Patolsky F. Laser-induced graphene structures: from synthesis and applications to future prospects[J]. Materi Today, 2023: 104-136. DOI: 10.1016/j.mattod.2023.10.009.
|
| [26] |
Rafiee M, Abrams DJ, Cardinale L, et al. Cyclic voltammetry and chronoamperometry: mechanistic tools for organic electrosynthesis[J]. Chem Soc Rev, 2024, 53(2): 566-585. DOI: 10.1039/d2cs00706a.
|
| [27] |
Cai YQ, Chen D, Chen Y, et al. An electrochemical biosensor based on graphene intercalated functionalized black phosphorus/gold nanoparticles nanocomposites for the detection of bacterial enzyme[J]. Microchem J, 2023, 193: 109255. DOI: 10.1016/j.microc.2023.109255.
|
| [28] |
Kruse CR, Nuutila K, Lee CC, et al. The external microenvironment of healing skin wounds[J]. Wound Repair Regen, 2015, 23(4): 456-464. DOI: 10.1111/wrr.12303.
|
| [29] |
李海胜, 罗高兴, 袁志强. 烧伤创面进行性加深防治策略研究进展[J]. 中华烧伤杂志, 2021, 37(12): 1199-1204. DOI: 10.3760/cma.j.cn501120-20200828-00396.
|
| [30] |
Yin M, Li J, Huang L, et al. Identification of microbes in wounds using near-infrared spectroscopy[J]. Burns, 2022, 48(4): 791-798. DOI: 10.1016/j.burns.2021.09.002.
|
| [31] |
Hazenberg CE, van Netten JJ, van Baal SG, et al. Assessment of signs of foot infection in diabetes patients using photographic foot imaging and infrared thermography[J]. Diabetes Technol Ther, 2014, 16(6): 370-377. DOI: 10.1089/dia.2013.0251.
|
| [32] |
Rosa BMG, Yang GZ. Ultrasound powered implants: design, performance considerations and simulation results[J]. Sci Rep, 2020, 10(1): 6537. DOI: 10.1038/s41598-020-63097-2.
|
| [33] |
Madden J, Vaughan E, Thompson M, et al. Electrochemical sensor for enzymatic lactate detection based on laser-scribed graphitic carbon modified with platinum, chitosan and lactate oxidase[J]. Talanta, 2022, 246: 123492. DOI: 10.1016/j.talanta.2022.123492.
|
| [34] |
Ono S, Imai R, Ida Y, et al. Increased wound pH as an indicator of local wound infection in second degree burns [J]. Burns, 2015, 41(4): 820-824. DOI: 10.1016/j.burns.2014.10.023.
|
| [35] |
Yoon JH, Hong SB, Yun SO, et al. High performance flexible pH sensor based on polyaniline nanopillar array electrode[J]. J Colloid Interface Sci, 2017, 490: 53-58. DOI: 10.1016/j.jcis.2016.11.033.
|
| [36] |
Obeng EM, Fulcher AJ, Wagstaff KM. Harnessing sortase A transpeptidation for advanced targeted therapeutics and vaccine engineering[J]. Biotechnol Adv, 2023, 64: 108108. DOI: 10.1016/j.biotechadv.2023.108108.
|
| [37] |
Cai Y, Chen D, Chen Y, et al. An electrochemical biosensor based on graphene intercalated functionalized black phosphorus/gold nanoparticles nanocomposites for the detection of bacterial enzyme[J]. Microchem J, 2023, 193: 109255. DOI: 10.1016/j.microc.2023.109255.
|
| [38] |
蒋委余, 范佳颖, 樊力铭, 等. 尿路致病性大肠埃希菌毒力因子TcpC在其免疫逃逸中的作用及致病机制研究[J]. 中华微生物学和免疫学杂志, 2024, 44(3): 198-204. DOI: 10.3760/cma.j.cn112309-20231130-00162.
|
| [39] |
Liu J, Ji H, Lv X, et al. Laser-induced graphene (LIG) -driven medical sensors for health monitoring and diseases diagnosis[J]. Mikrochim Acta, 2022, 189(2): 54. DOI: 10.1007/s00604-021-05157-6.
|
| [40] |
赵世宇, 马玉平, 姚迪, 等. 基于激光诱导石墨烯物理传感器的研究进展[J]. 仪表技术与传感器, 2025(4): 1-9. DOI: 10.3969/j.issn.1002-1841.2025.04.001.
|