Turn off MathJax
Article Contents
Lyu Kaiyang,Li Yashu.Technological innovations in the mechanism and reduction of surgical incision scars based on the mechano-chemo-biological theory[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251013-00424.
Citation: Lyu Kaiyang,Li Yashu.Technological innovations in the mechanism and reduction of surgical incision scars based on the mechano-chemo-biological theory[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251013-00424.

Technological innovations in the mechanism and reduction of surgical incision scars based on the mechano-chemo-biological theory

doi: 10.3760/cma.j.cn501225-20251013-00424
Funds:

General Program of National Natural Science Foundation of China 81772091

Shanghai Oriental Talents Program-Outstanding Technical Leaders Project BJKJ2024024

  • Received Date: 2025-10-13
    Available Online: 2026-01-30
  • Surgical incisions often heal with linear scars, which may further develop into hypertrophic scars or keloids. Research indicates that biomechanical factors, particularly mechanical forces and matrix stiffness, regulate scar formation by influencing cellular behavior and extracellular matrix remodeling. Our team proposes that the dynamic coupling and synergistic interactions among mechanical, chemical, and biological factors collectively drive scar development. We emphasize that sustained tension control following wound closure is crucial to prevent scar widening and hyperplasia. Current tension-reducing methods have limitations: intraoperative sutures provide only short-term support; external tension-reducing devices (e.g., tension-reducing tape or zipper) are prone to detachment, may cause skin irritation, and suffer from poor patient compliance; fractional laser may still cause the scar to widen when used alone in high-tension areas. Therefore, our team proposes a scheme utilizing an intradermal suturing technique based on slow-absorbing sutures with in-situ backstitch, which aims to achieve long-term and effective tension management. Preliminary clinical observations suggested that this scheme provided sustained tension reduction of surgical wound and, when combined with fractional laser therapy, showed potential for synergistic improvement in scar width, overcoming the shortage of conventional methods. Moving forward, further research will optimize this technique, validate its efficacy and safety, and promote its standardization and widespread adoption. Ultimately, we aim to promote the ideal healing of surgical incisions.

     

  • loading
  • [1]
    LiY, LiuA, WangJ, et al. Suture-anchored cutaneous tension induces persistent hypertrophic scarring in a novel murine model[J]. Burns Trauma, 2024,12:tkae051. DOI: 10.1093/burnst/tkae051.
    [2]
    HosseiniM, BrownJ, KhosrotehraniK, et al. Skin biomechanics: a potential therapeutic intervention target to reduce scarring[J]. Burns Trauma, 2022,10:tkac036. DOI: 10.1093/burnst/tkac036.
    [3]
    CustisT, ArmstrongAW, KingTH, et al. Effect of Adhesive Strips and Dermal Sutures vs Dermal Sutures Only on Wound Closure: A Randomized Clinical Trial[J]. JAMA Dermatol, 2015,151(8):862-867. DOI: 10.1001/jamadermatol.2015.0174.
    [4]
    ChenZ, JinY, ZouY, et al. Scar Prevention With Prolonged Use of Tissue Adhesive Zipper Immediately After Facial Surgery: A Randomized Controlled Trial[J]. Aesthet Surg J, 2022,42(5):NP265-NP272. DOI: 10.1093/asj/sjab407.
    [5]
    JiQ, LuoL, NiJ, et al. Fractional CO2 Laser to Treat Surgical Scars: A System Review and Meta-Analysis on Optimal Timing[J]. J Cosmet Dermatol, 2025,24(1):e16708. DOI: 10.1111/jocd.16708.
    [6]
    RothmanSS. Physiology and biochemistry of the skin[M]. London:Cambridge University Press,1954.
    [7]
    KangM, KoUH, OhEJ, et al. Tension-sensitive HOX gene expression in fibroblasts for differential scar formation[J]. J Transl Med, 2025,23(1):168. DOI: 10.1186/s12967-025-06191-1.
    [8]
    LangranaNA, AlexanderH, StrauchlerI, et al. Effect of mechanical load in wound healing[J]. Ann Plast Surg, 1983,10(3):200-208. DOI: 10.1097/00000637-198303000-00005.
    [9]
    RognoniE, PiscoAO, HiratsukaT, et al. Fibroblast state switching orchestrates dermal maturation and wound healing[J]. Mol Syst Biol, 2018,14(8):e8174. DOI: 10.15252/msb.20178174.
    [10]
    AarabiS, BhattKA, ShiY, et al. Mechanical load initiates hypertrophic scar formation through decreased cellular apoptosis[J]. FASEB J, 2007,21(12):3250-3261. DOI: 10.1096/fj.07-8218com.
    [11]
    RossR, GuoY, WalkerRN, et al. Biomechanical Activation of Keloid Fibroblasts Promotes Lysosomal Remodeling and Exocytosis[J]. J Invest Dermatol, 2024,144(12):2730-2741. DOI: 10.1016/j.jid.2024.04.015.
    [12]
    CaoG, YeM, WangH, et al. The Role of Biomechanical Forces in the Formation and Treatment of Pathological Scars[J]. Clin Cosmet Investig Dermatol, 2024,17:2565-2571. DOI: 10.2147/CCID.S496253.
    [13]
    MascharakS, GuoJL, GriffinM, et al. Modelling and targeting mechanical forces in organ fibrosis[J]. Nat Rev Bioeng, 2024,2(4):305-323. DOI: 10.1038/s44222-023-00144-3.
    [14]
    MartinoF, PerestreloAR, VinarskýV, et al. Cellular Mechanotransduction: From Tension to Function[J]. Front Physiol, 2018,9:824. DOI: 10.3389/fphys.2018.00824.
    [15]
    AlenghatFJ, IngberDE. Mechanotransduction: all signals point to cytoskeleton, matrix, and integrins[J]. Sci STKE, 2002,2002(119):pe6. DOI: 10.1126/stke.2002.119.pe6.
    [16]
    WangR, ChenB, WeiH, et al. Collecting and deactivating TGF-β1 hydrogel for anti-scarring therapy in post-glaucoma filtration surgery[J]. Mater Today Bio, 2022,14:100260. DOI: 10.1016/j.mtbio.2022.100260.
    [17]
    ZhangQ, ShiL, HeH, et al. Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway[J]. ACS Nano, 2022,16(7):10163-10178. DOI: 10.1021/acsnano.1c11016.
    [18]
    WongVW, RustadKC, AkaishiS, et al. Focal adhesion kinase links mechanical force to skin fibrosis via inflammatory signaling[J]. Nat Med, 2011,18(1):148-152. DOI: 10.1038/nm.2574.
    [19]
    VelasquezLS, SutherlandLB, LiuZ, et al. Activation of MRTF-A-dependent gene expression with a small molecule promotes myofibroblast differentiation and wound healing[J]. Proc Natl Acad Sci U S A, 2013,110(42):16850-16855. DOI: 10.1073/pnas.1316764110.
    [20]
    RagazziniS, ScocozzaF, BernavaG, et al. Mechanosensor YAP cooperates with TGF-β1 signaling to promote myofibroblast activation and matrix stiffening in a 3D model of human cardiac fibrosis[J]. Acta Biomater, 2022,152:300-312. DOI: 10.1016/j.actbio.2022.08.063.
    [21]
    MascharakS, desJardins-ParkHE, DavittMF, et al. Preventing Engrailed-1 activation in fibroblasts yields wound regeneration without scarring[J]. Science, 2021,372(6540)DOI: 10.1126/science.aba2374.
    [22]
    WipffP, RifkinDB, MeisterJ, et al. Myofibroblast contraction activates latent TGF-beta1 from the extracellular matrix[J]. J Cell Biol, 2007,179(6):1311-1323. DOI: 10.1083/jcb.200704042.
    [23]
    WuM, PedrozaM, LafyatisR, et al. Identification of cadherin 11 as a mediator of dermal fibrosis and possible role in systemic sclerosis[J]. Arthritis Rheumatol, 2014,66(4):1010-1021. DOI: 10.1002/art.38275.
    [24]
    PittetP, LeeK, KulikAJ, et al. Fibrogenic fibroblasts increase intercellular adhesion strength by reinforcing individual OB-cadherin bonds[J]. J Cell Sci, 2008,121(Pt 6):877-886. DOI: 10.1242/jcs.024877.
    [25]
    BeyerC, SchrammA, AkhmetshinaA, et al. β-catenin is a central mediator of pro-fibrotic Wnt signaling in systemic sclerosis[J]. Ann Rheum Dis, 2012,71(5):761-767. DOI: 10.1136/annrheumdis-2011-200568.
    [26]
    WongVW, PaternoJ, SorkinM, et al. Mechanical force prolongs acute inflammation via T-cell-dependent pathways during scar formation[J]. FASEB J, 2011,25(12):4498-4510. DOI: 10.1096/fj.10-178087.
    [27]
    ZhouDW, LeeTT, WengS, et al. Effects of substrate stiffness and actomyosin contractility on coupling between force transmission and vinculin-paxillin recruitment at single focal adhesions[J]. Mol Biol Cell, 2017,28(14):1901-1911. DOI: 10.1091/mbc.E17-02-0116.
    [28]
    GrannasK, ArngårdenL, LönnP, et al. Crosstalk between Hippo and TGFβ: Subcellular Localization of YAP/TAZ/Smad Complexes[J]. J Mol Biol, 2015,427(21):3407-3415. DOI: 10.1016/j.jmb.2015.04.015.
    [29]
    TuS, LiY, LiJ, et al. Mechanical stretch-mediated fibroblast activation: The pivotal role of Piezo1 channels[J]. Biochim Biophys Acta Mol Cell Res, 2025,1872(7):120008. DOI: 10.1016/j.bbamcr.2025.120008.
    [30]
    Elosegui-ArtolaA, AndreuI, BeedleAEM, et al. Force Triggers YAP Nuclear Entry by Regulating Transport across Nuclear Pores[J]. Cell, 2017,171(6):1397-1410.e14. DOI: 10.1016/j.cell.2017.10.008.
    [31]
    HoffmanLM, SmithMA, JensenCC, et al. Mechanical stress triggers nuclear remodeling and the formation of transmembrane actin nuclear lines with associated nuclear pore complexes[J]. Mol Biol Cell, 2020,31(16):1774-1787. DOI: 10.1091/mbc.E19-01-0027.
    [32]
    LangevinHM, BouffardNA, BadgerGJ, et al. Dynamic fibroblast cytoskeletal response to subcutaneous tissue stretch ex vivo and in vivo[J]. Am J Physiol Cell Physiol, 2005,288(3):C747-756. DOI: 10.1152/ajpcell.00420.2004.
    [33]
    StewardRL, ChengC, WangDL, et al. Probing cell structure responses through a shear and stretching mechanical stimulation technique[J]. Cell Biochem Biophys, 2010,56(2-3):115-124. DOI: 10.1007/s12013-009-9075-2.
    [34]
    DahlKN, RibeiroAJS, LammerdingJ. Nuclear shape, mechanics, and mechanotransduction[J]. Circ Res, 2008,102(11):1307-1318. DOI: 10.1161/CIRCRESAHA.108.173989.
    [35]
    NagayamaK, FukueiT. Cyclic stretch-induced mechanical stress to the cell nucleus inhibits ultraviolet radiation-induced DNA damage[J]. Biomech Model Mechanobiol, 2020,19(2):493-504. DOI: 10.1007/s10237-019-01224-3.
    [36]
    SosaBA, RothballerA, KutayU, et al. LINC complexes form by binding of three KASH peptides to domain interfaces of trimeric SUN proteins[J]. Cell, 2012,149(5):1035-1047. DOI: 10.1016/j.cell.2012.03.046.
    [37]
    GruenbaumY, MedaliaO. Lamins: the structure and protein complexes[J]. Curr Opin Cell Biol, 2015,32:7-12. DOI: 10.1016/j.ceb.2014.09.009.
    [38]
    HoCY, JaaloukDE, VartiainenMK, et al. Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics[J]. Nature, 2013,497(7450):507-511. DOI: 10.1038/nature12105.
    [39]
    FisherGJ, KangS, VaraniJ, et al. Mechano-chemo-biological theory of cells and tissues: review and perspectives[J]. Arch Dermatol, 2002,138(11): 1462-1470.DOI: 10.1001/archderm.138.11.1462, PMID:12437452
    [40]
    GeM, ZhengW, YaoP, et al. Progress in tension-relieving suturing surgery: revolutionary surgical techniques and patient prognosis evaluation methods[J]. Front Surg, 2025,12:1587582. DOI: 10.3389/fsurg.2025.1587582.
    [41]
    ZitelliJA, MoyRL. Buried vertical mattress suture[J]. J Dermatol Surg Oncol, 1989,15(1):17-19. DOI: 10.1111/j.1524-4725.1989.tb03107.x.
    [42]
    SadickNS, D'AmelioDL, WeinsteinC. The modified buried vertical mattress suture. A new technique of buried absorbable wound closure associated with excellent cosmesis for wounds under tension[J]. J Dermatol Surg Oncol, 1994,20(11):735-739. DOI: 10.1111/j.1524-4725.1994.tb03195.x.
    [43]
    ZhangX, DiaoJ, GuoS, et al. Wedge-shaped excision and modified vertical mattress suture fully buried in a multilayered and tensioned wound closure[J]. Aesthetic Plast Surg, 2009,33(3):457-460. DOI: 10.1007/s00266-009-9311-6.
    [44]
    KantorJ. The set-back buried dermal suture: an alternative to the buried vertical mattress for layered wound closure[J]. J Am Acad Dermatol, 2010,62(2):351-353. DOI: 10.1016/j.jaad.2009.05.049.
    [45]
    ZuberTJ. The mattress sutures: vertical, horizontal, and corner stitch[J]. Am Fam Physician, 2002,66(12):2231-2236.
    [46]
    SeeA, SmithHR. Partially buried horizontal mattress suture: modification of the Haneke-Marini suture[J]. Dermatol Surg, 2004,30(12Pt 1):1491-1492. DOI: 10.1111/j.1524-4725.2004.30508.x.
    [47]
    AlamM, GoldbergLH. Utility of fully buried horizontal mattress sutures[J]. J Am Acad Dermatol, 2004,50(1):73-76. DOI: 10.1016/s0190-9622(03)02097-8.
    [48]
    MengF, AndreaS, ChengS, et al. Modified Subcutaneous Buried Horizontal Mattress Suture Compared With Vertical Buried Mattress Suture[J]. Ann Plast Surg, 2017,79(2):197-202. DOI: 10.1097/SAP.0000000000001043.
    [49]
    MinP, ZhangS, SinakiDG, et al. Using Zhang's supertension-relieving suture technique with slowly-absorbable barbed sutures in the management of pathological scars: a multicenter retrospective study[J]. Burns Trauma, 2023,11:tkad026. DOI: 10.1093/burnst/tkad026.
    [50]
    ChenJ, MoY, ChenY, et al. Application and effect of tension-reducing suture in surgical treatment of hypertrophic scar[J]. BMC Surg, 2024,24(1):119. DOI: 10.1186/s12893-024-02390-7.
    [51]
    LiuH, HuM, RaoM, et al. [Effectiveness of stepwise progressive ultra-tension-reducing suture method in treatment of high-tension wounds on chest, back, and limbs][J]. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi, 2024,38(12):1505-1509. DOI: 10.7507/1002-1892.202409048.
    [52]
    ChenW, JiangT, ZhongZ, et al. The effect of double W tension-reduced suture technique on the abdominal scars following the da Vinci robot-assisted gastrectomy for severely obese patients[J]. BMC Surg, 2023,23(1):115. DOI: 10.1186/s12893-023-01979-8.
    [53]
    WuF, TianY, WangF, et al. The suture effect of butterfly suture combined with the looped, broad, and deep buried suture in patients with pigmented naevus receiving surgery excision[J]. Arch Dermatol Res, 2025,317(1):433. DOI: 10.1007/s00403-025-03957-x.
    [54]
    ZhangY, LeiZ, LinB, et al. Split-level folding, step-type tension-relieving suture technique, and the evaluation on scar minimization[J]. J Cosmet Dermatol, 2024,23(6):2199-2208. DOI: 10.1111/jocd.16236.
    [55]
    HuangC, LiuO. Using a Zipper Device to Minimize Scarring After Excision of Facial Nevi in Pediatric Patients[J]. J Craniofac Surg, 2024,DOI: 10.1097/SCS.0000000000010531.
    [56]
    GaoY, WangY, LiW, et al. Clinical efficacy analysis of cosmetic suture technique combined with tension reducer in the treatment of facial skin trauma[J]. Medicine (Baltimore), 2024,103(52):e41040. DOI: 10.1097/MD.0000000000041040.
    [57]
    RenòF, SabbatiniM, LombardiF, et al. In vitro mechanical compression induces apoptosis and regulates cytokines release in hypertrophic scars[J]. Wound Repair Regen, 2003,11(5):331-336. DOI: 10.1046/j.1524-475x.2003.11504.x.
    [58]
    章一新, 柴筠. 瘢痕压力治疗的机制与临床应用[J]. 2025,41(4):316-324. DOI: 10.3760/cma.j.cn501225-20250215-00064.
    [59]
    中华医学会烧伤外科学分会. 儿童瘢痕预防与治疗临床实践指南(2025版)[J]. 中华烧伤与创面修复杂志,2025,41(11):1011-1028.DOI: 10.3760/cma.j.cn501225-20250630-00285.
    [60]
    De DeckerI, BeeckmanA, HoeksemaH, et al. Pressure therapy for scars: Myth or reality? A systematic review[J]. Burns, 2023,49(4):741-756. DOI: 10.1016/j.burns.2023.03.007.
    [61]
    GieleHP, LiddiardK, CurrieK, et al. Direct measurement of cutaneous pressures generated by pressure garments[J]. Burns, 1997,23(2):137-141. DOI: 10.1016/s0305-4179(96)00088-5.
    [62]
    MannR, YeongEK, MooreM, et al. Do custom-fitted pressure garments provide adequate pressure?[J]. J Burn Care Rehabil, 1997,18(3):247-249. DOI: 10.1097/00004630-199705000-00013.
    [63]
    LaiCHY, Li-TsangCWP. Validation of the Pliance X System in measuring interface pressure generated by pressure garment[J]. Burns, 2009,35(6):845-851. DOI: 10.1016/j.burns.2008.09.013.
    [64]
    YagmurC, AkaishiS, OgawaR, et al. Mechanical receptor-related mechanisms in scar management: a review and hypothesis[J]. Plast Reconstr Surg, 2010,126(2):426-434. DOI: 10.1097/PRS.0b013e3181df715d.
    [65]
    LoCM, WangHB, DemboM, et al. Cell movement is guided by the rigidity of the substrate[J]. Biophys J, 2000,79(1):144-152. DOI: 10.1016/S0006-3495(00)76279-5.
    [66]
    HultmanCS, FriedstatJS, EdkinsRE, et al. Laser resurfacing and remodeling of hypertrophic burn scars: the results of a large, prospective, before-after cohort study, with long-term follow-up[J]. Ann Surg, 2014,260(3):519-529; discussion 529-532. DOI: 10.1097/SLA.0000000000000893.
    [67]
    MaY, BarnesSP, ChenY, et al. Influence of scar age, laser type and laser treatment intervals on adult burn scars: A systematic review and meta-analysis[J]. PLoS One, 2023,18(9):e0292097. DOI: 10.1371/journal.pone.0292097.
    [68]
    ChoiJE, OhGN, KimJY, et al. Ablative fractional laser treatment for hypertrophic scars: comparison between Er:YAG and CO2 fractional lasers[J]. J Dermatolog Treat, 2014,25(4):299-303. DOI: 10.3109/09546634.2013.782090.
    [69]
    ChoSB, LeeSJ, ChungWS, et al. Treatment of burn scar using a carbon dioxide fractional laser[J]. J Drugs Dermatol, 2010,9(2):173-175.
    [70]
    KimS. Clinical trial of a pinpoint irradiation technique with the CO2 laser for the treatment of atrophic acne scars[J]. J Cosmet Laser Ther, 2008,10(3):177-180. DOI: 10.1080/14764170801930080.
    [71]
    ChristophelJJ, ElmC, EndrizziBT, et al. A randomized controlled trial of fractional laser therapy and dermabrasion for scar resurfacing[J]. Dermatol Surg, 2012,38(4):595-602. DOI: 10.1111/j.1524-4725.2011.02283.x.
    [72]
    OmiT, NumanoK. The Role of the CO2 Laser and Fractional CO2 Laser in Dermatology[J]. Laser Ther, 2014,23(1):49-60. DOI: 10.5978/islsm.14-RE-01.
    [73]
    LiangYY, ShenJC, LiW. Evolution of compressive mechanical properties of early hypertrophic scar during laser treatment[J]. J Biomech, 2021,129:110783. DOI: 10.1016/j.jbiomech.2021.110783.
    [74]
    NaouriM, AtlanM, PerrodeauE, et al. Skin tightening induced by fractional CO(2) laser treatment: quantified assessment of variations in mechanical properties of the skin[J]. J Cosmet Dermatol, 2012,11(3):201-206. DOI: 10.1111/j.1473-2165.2012.00627.x.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(5)

    Article Metrics

    Article views (167) PDF downloads(17) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return