| Citation: | Xiao Hongyan,Su Shan,An Jiawei,et al.Effects and mechanism of aminoguanidine on acute liver injury in mice[J].Chin J Burns Wounds,2026,42(2):1-10.DOI: 10.3760/cma.j.cn501225-20251016-00431. |
| [1] |
HuangS, WangY, XieS, et al. Hepatic TGFβr1 deficiency attenuates lipopolysaccharide/D-galactosamine-induced acute liver failure through inhibiting GSK3β-Nrf2-mediated hepatocyte apoptosis and ferroptosis[J]. Cell Mol Gastroenterol Hepatol, 2022,13(6):1649-1672. DOI: 10.1016/j.jcmgh.2022.02.009.
|
| [2] |
WangR, ChenY, HanJ, et al. Selectively targeting the AdipoR2-CaM-CaMKII-NOS3 axis by SCM-198 as a rapid-acting therapy for advanced acute liver failure[J]. Nat Commun, 2024,15(1):10690. DOI: 10.1038/s41467-024-55295-7.
|
| [3] |
YuC, ChenP, MiaoL, et al. The role of the NLRP3 inflammasome and programmed cell death in acute liver injury[J]. Int J Mol Sci, 2023,24(4) :3067. DOI: 10.3390/ijms24043067.
|
| [4] |
ZhangH, GaoM, WangH, et al. Atractylenolide I prevents acute liver failure in mouse by regulating M1 macrophage polarization[J]. Sci Rep, 2025,15(1):4015. DOI: 10.1038/s41598-025-86977-x.
|
| [5] |
GaoZ, DaiH, ZhangQ, et al. Hydroxytyrosol alleviates acute liver injury by inhibiting the TNF-α/PI3K/AKT signaling pathway via targeting TNF-α signaling[J]. Int J Mol Sci, 2024,25(23) :12844. DOI: 10.3390/ijms252312844.
|
| [6] |
YangW, BianS, LiuL. Urantide alleviates lipopolysaccharide/D-galactosamine-induced acute liver failure through upregulating carboxylesterase1f in mice[J]. Front Cell Infect Microbiol, 2025,15:1653725. DOI: 10.3389/fcimb.2025.1653725.
|
| [7] |
LiuY, ZhaoJ, CongW, et al. Alpinetin pretreatment prevents lipopolysaccharide/D-galactosamine-induced acute liver injury in mice by inhibiting ferroptosis via the Nrf2/SLC7A11/GPX4 pathway[J]. Sci Rep, 2025,15(1):40065. DOI: 10.1038/s41598-025-26588-8.
|
| [8] |
LongL, ZhangM, QinH, et al. Isorhamnetin protects against D-GalN/LPS-induced acute liver injury in mice through anti-oxidative stress, anti-inflammation, and anti-apoptosis[J]. BMC Complement Med Ther, 2025,25(1):297. DOI: 10.1186/s12906-025-04949-0.
|
| [9] |
GuoY, GuoW, ChenH, et al. Mechanisms of sepsis-induced acute liver injury: a comprehensive review[J]. Front Cell Infect Microbiol, 2025,15:1504223. DOI: 10.3389/fcimb.2025.1504223.
|
| [10] |
CaiX, DengJ, WangL, et al. Gallium-doped MXene nanozymes protect liver through multi-death pathway blockade and hepatocyte regeneration[J]. Adv Sci (Weinh), 2026:e09079. DOI: 10.1002/advs.202509079.
|
| [11] |
ZhengS, GaoY, CaoH, et al. Sophoricoside ameliorates LPS/D-GalN-induced acute liver failure by inhibiting ferroptosis via activation of the Nrf2/GPX4 signaling pathway[J]. Phytomedicine, 2026,150:157716. DOI: 10.1016/j.phymed.2025.157716.
|
| [12] |
CormanB, DuriezM, PoitevinP, et al. Aminoguanidine prevents age-related arterial stiffening and cardiac hypertrophy[J]. Proc Natl Acad Sci U S A, 1998,95(3):1301-1306. DOI: 10.1073/pnas.95.3.1301.
|
| [13] |
ThornalleyPJ. Use of aminoguanidine (Pimagedine) to prevent the formation of advanced glycation endproducts[J]. Arch Biochem Biophys, 2003,419(1):31-40. DOI: 10.1016/j.abb.2003.08.013.
|
| [14] |
KosticT, PopovićD, PerisicZ, et al. The hepatoprotective effect of aminoguanidine in acute liver injury caused by CCl4 in rats[J]. Biomed Pharmacother, 2022,156:113918. DOI: 10.1016/j.biopha.2022.113918.
|
| [15] |
PatrycyM, JanickaM, KaucA, et al. The role of nitric oxide in HSV-1 infection: the use of an inducible nitric synthase inhibitor aminoguanidine to treat neuroinflammation[J]. Microorganisms, 2025,13(10) :2222. DOI: 10.3390/microorganisms13102222.
|
| [16] |
TIdSilva, TdCFernandes, de Sá MoreiraET, et al. Role of Nitric oxide synthase Ⅱ in cognitive impairment due to experimental cerebral malaria[J]. Nitric Oxide, 2024,153:41-49. DOI: 10.1016/j.niox.2024.10.002.
|
| [17] |
Díez-FernándezC, SanzN, AlvarezAM, et al. Influence of aminoguanidine on parameters of liver injury and regeneration induced in rats by a necrogenic dose of thioacetamide[J]. Br J Pharmacol, 1998,125(1):102-108. DOI: 10.1038/sj.bjp.0702014.
|
| [18] |
MahmoudMF, ZakariaS, FahmyA. Can chronic nitric oxide inhibition improve liver and renal dysfunction in bile duct ligated rats?[J]. Adv Pharmacol Sci, 2015,2015:298792. DOI: 10.1155/2015/298792.
|
| [19] |
YangS, KuangG, ZhangL, et al. Mangiferin attenuates LPS/D-GalN-induced acute liver injury by promoting HO-1 in kupffer cells[J]. Front Immunol, 2020,11:285. DOI: 10.3389/fimmu.2020.00285.
|
| [20] |
FengJ, YeS, HaiB, et al. RNF115/BCA2 deficiency alleviated acute liver injury in mice by promoting autophagy and inhibiting inflammatory response[J]. Cell Death Dis, 2023,14(12):855. DOI: 10.1038/s41419-023-06379-7.
|
| [21] |
陈立, 李东良. 免疫检查点抑制剂相关肝损伤临床诊治的若干问题与思考[J]. 中华肝脏病杂志,2025,33(8):806-810.DOI: 10.3760/cma.j.cn501113-20240103-00005.
|
| [22] |
Rastegar-MoghaddamSH, KiumarsiZ, MiraniA, et al. Aminoguanidine improved liver function and attenuated oxidative stress in hypothyroid rats by propylthiouracil[J]. Adv Biomed Res, 2025,14:64. DOI: 10.4103/abr.abr_538_24.
|
| [23] |
PastenC, LozanoM, RoccoJ, et al. Aminoguanidine prevents the oxidative stress, inhibiting elements of inflammation, endothelial activation, mesenchymal markers, and confers a renoprotective effect in renal ischemia and reperfusion injury[J]. Antioxidants (Basel), 2021,10(11):1724.DOI: 10.3390/antiox10111724.
|
| [24] |
AhmedAF, MahmoudMF, OufMA, et al. Aminoguanidine potentiates the hepatoprotective effect of silymarin in CCL4 treated rats[J]. Ann Hepatol, 2011,10(2):207-215.
|
| [25] |
徐小惠,冯金梅,罗颖,等. NDUFA13过表达可减轻 CCl4诱导的小鼠肝纤维化:基于抑制NLRP3活化[J]. 南方医科大学学报, 2024,44(2):201-209. DOI: 10.12122/j.issn.1673-4254.2024.02.01.
|
| [26] |
MaY, SongX, MaT, et al. Aminoguanidine inhibits IL-1β-induced protein expression of iNOS and COX-2 by blocking the NF-κB signaling pathway in rat articular chondrocytes[J]. Exp Ther Med, 2020,20(3):2623-2630. DOI: 10.3892/etm.2020.9021.
|
| [27] |
刘潇, 蒙健林, 王明刚, 等. 解毒化瘀升散方抑制NLRP3信号通路缓解慢加急性肝衰竭大鼠炎症损伤的实验研究[J]. 中华肝脏病杂志,2024,32(4):354-362.DOI: 10.3760/cma.j.cn501113-20230816-00060.
|
| [28] |
EkongU, ZengS, DunH, et al. Blockade of the receptor for advanced glycation end products attenuates acetaminophen-induced hepatotoxicity in mice[J]. J Gastroenterol Hepatol, 2006,21(4):682-688. DOI: 10.1111/j.1440-1746.2006.04225.x.
|
| [29] |
ZengS, FeirtN, GoldsteinM, et al. Blockade of receptor for advanced glycation end product (RAGE) attenuates ischemia and reperfusion injury to the liver in mice[J]. Hepatology, 2004,39(2):422-432. DOI: 10.1002/hep.20045.
|
| [30] |
GoodwinM, HerathC, JiaZ, et al. Advanced glycation end products augment experimental hepatic fibrosis[J]. J Gastroenterol Hepatol, 2013,28(2):369-376. DOI: 10.1111/jgh.12042.
|
| [31] |
WeinhageT, WirthT, SchützP, et al. The Receptor for advanced glycation endproducts (RAGE) contributes to severe inflammatory liver injury in mice[J]. Front Immunol, 2020,11:1157. DOI: 10.3389/fimmu.2020.01157.
|
| [32] |
ReddyVP, AryalP, DarkwahEK. Advanced glycation end products in health and disease[J]. Microorganisms, 2022,10(9):1848. DOI: 10.3390/microorganisms10091848.
|
| [33] |
龚政, 张筱薇, 李笑眉, 等. 黄芩苷对高糖处理的小鼠成纤维细胞铁死亡的作用及其机制[J].中华烧伤与创面修复杂志,2025,41(3):277-285. DOI: 10.3760/cma.j.cn501225-20240425-00151.
|
| [34] |
CapellettiMM, ManceauH, PuyH, et al. Ferroptosis in liver diseases: an overview[J]. Int J Mol Sci, 2020,21(14):4908. DOI: 10.3390/ijms21144908.
|
| [35] |
SunY, ZhaoB, LiH, et al. Overview of ferroptosis and pyroptosis in acute liver failure[J]. World J Gastroenterol, 2024,30(34):3856-3861. DOI: 10.3748/wjg.v30.i34.3856.
|
| [36] |
GuoY, ChenH, SunJ, et al. Maresin1 inhibits ferroptosis via the Nrf2/SLC7A11/GPX4 pathway to protect against sepsis-induced acute liver injury[J]. J Inflamm Res, 2024,17:11041-11053. DOI: 10.2147/JIR.S498775.
|
| [37] |
WangJ, LiaoL, MiaoB, et al. Deciphering the role of the MALT1-RC3H1 axis in regulating GPX4 protein stability[J]. Proc Natl Acad Sci U S A, 2025,122(1):e2419625121. DOI: 10.1073/pnas.2419625121.
|
| [38] |
张浩, 官浩, 汪宇航, 等. 铁死亡在大鼠烧冲复合伤合并急性肺损伤中的作用及其机制[J].中华烧伤与创面修复杂志,2024,40(11):1034-1042. DOI: 10.3760/cma.j.cn501225-20240528-00199.
|
| [39] |
DollS, PronethB, TyurinaYY, et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition[J]. Nat Chem Biol, 2017,13(1):91-98. DOI: 10.1038/nchembio.2239.
|
| [40] |
HeY, WangJ, YingC, et al. The interplay between ferroptosis and inflammation: therapeutic implications for cerebral ischemia-reperfusion[J]. Front Immunol, 2024,15:1482386. DOI: 10.3389/fimmu.2024.1482386.
|