Turn off MathJax
Article Contents
Yao Yongming,Ren Chao.Postburn infection and immune dysfunction: new translational horizons from the pathogenesis to precision medicine[J].Chin J Burns Wounds,2026,42(2):1-7.DOI: 10.3760/cma.j.cn501225-20251104-00457.
Citation: Yao Yongming,Ren Chao.Postburn infection and immune dysfunction: new translational horizons from the pathogenesis to precision medicine[J].Chin J Burns Wounds,2026,42(2):1-7.DOI: 10.3760/cma.j.cn501225-20251104-00457.

Postburn infection and immune dysfunction: new translational horizons from the pathogenesis to precision medicine

doi: 10.3760/cma.j.cn501225-20251104-00457
Funds:

National Key Research and Development Program of China 2022YFA1104600

Key Program of National Natural Science Foundation of China 82130062

More Information
  • Corresponding author: Yao Yongming, Email: c_ff@sina.com
  • Received Date: 2025-11-04
    Available Online: 2026-01-30
  • The "pathological vicious cycle" between skin barrier disruption and immune dysfunction renders infection a primary complication and main cause of death among burn patients. Burn-related sepsis patients account for more than 50% of all burn-associated deaths. Currently, the prevention and treatment of burn infections are confronted with multiple challenges: the superimposed effects of uncontrolled inflammatory response and immune disorder triggered by infection, the rapid progression from local wound to systemic damage, and the massive colonization of multidrug-resistant bacteria, which significantly increases the difficulty of antibacterial therapy. This paper conducted an in-depth analysis of the mechanisms underlying immune dysfunction after burn-related infections from phenotypic manifestations to intrinsic regulation. It systematically elaborated on the crucial roles and mechanisms in the pathogenesis of immune dysfunction, including immune evasion of multidrug-resistant bacteria, the failed balance of immune responses, intestinal flora, and novel subtypes of immune regulatory cells. This paper further reported the emerging technologies for infection assessment and immune monitoring among burn patients by integrating the latest advancements in intelligent wound detecting system and novel biomarkers. Focusing on innovative therapeutic strategies targeting postburn immune regulation and local microenvironment remodeling, it further analyzed the challenges in clinical translation and future development directions.

     

  • loading
  • [1]
    ChoongE,JuratD,SandeepB,et al.The impact of infection on length of stay in adult burns: a scoping review[J].Burns,2024,50(4):797-807.DOI: 10.1016/j.burns.2024.01.003.
    [2]
    SalyerCE,BomholtC,BeckmannN,et al.Novel therapeutics for the treatment of burn infection[J].Surg Infect (Larchmt),2021,22(1):113-120.DOI: 10.1089/sur.2020.104.
    [3]
    GongY,PengY,LuoX,et al.Different infection profiles and antimicrobial resistance patterns between burn ICU and common wards[J].Front Cell Infect Microbiol,2021,11:681731.DOI: 10.3389/fcimb.2021.681731.
    [4]
    ParmanikA,DasS,KarB,et al.Current treatment strategies against multidrug-resistant bacteria: a review[J].Curr Microbiol,2022,79(12):388.DOI: 10.1007/s00284-022-03061-7.
    [5]
    IslesNS,MuA,KwongJC,et al.Gut microbiome signatures and host colonization with multidrug-resistant bacteria[J].Trends Microbiol,2022,30(9):853-865.DOI: 10.1016/j.tim.2022.01.013.
    [6]
    RahimS,RahmanR,JhumaTA,et al.Disrupting antimicrobial resistance: unveiling the potential of vitamin C in combating biofilm formation in drug-resistant bacteria[J].BMC Microbiol,2025,25(1):212.DOI: 10.1186/s12866-025-03800-3.
    [7]
    ParkerD,AhnD,CohenT,et al.Innate immune signaling activated by MDR bacteria in the airway[J].Physiol Rev,2016,96(1):19-53.DOI: 10.1152/physrev.00009.2015.
    [8]
    MengH,ZhangT,WangZ,et al.High-throughput host-microbe single-cell RNA sequencing reveals ferroptosis-associated heterogeneity during Acinetobacter baumannii infection[J].Angew Chem Int Ed Engl,2024,63(18):e202400538.DOI: 10.1002/anie.202400538.
    [9]
    KuznetsovaTA,AndryukovBG,BesednovaNN.Modern aspects of burn injury immunopathogenesis and prognostic immunobiochemical markers (mini-review)[J].BioTech (Basel),2022,11(2):18.DOI: 10.3390/biotech11020018.
    [10]
    KimHG,GauthierML,HiggsA,et al.Chromatin remodeling and transcriptional silencing define the dynamic innate immune response of tissue resident macrophages after burn injury[J].bioRxiv,2025:2025.05.15.654340.DOI: 10.1101/2025.05.15.654340.
    [11]
    ZhuZ,GuoZ,GaoX,et al.Stomatin promotes neutrophil degranulation and vascular leakage in the early stage after severe burn via enhancement of the intracellular binding of neutrophil primary granules to F-actin[J].Burns,2024,50(3):653-665.DOI: 10.1016/j.burns.2023.12.013.
    [12]
    LuckME,LiX,HerrnreiterCJ,et al.Ethanol intoxication and burn injury increases intestinal regulatory T cell population and regulatory T cell suppressive capability[J].Shock,2022,57(2):230-237.DOI: 10.1097/SHK.0000000000001853.
    [13]
    YaoRQ,RenC,XiaZF,et al.Organelle-specific autophagy in inflammatory diseases: a potential therapeutic target underlying the quality control of multiple organelles[J].Autophagy,2021,17(2):385-401.DOI: 10.1080/15548627.2020.1725377.
    [14]
    HungTD,LamNN,HungNT.Prognostic values of neutrophil/lymphocyte ratio in severe burn patients[J].Ann Burns Fire Disasters,2024,37(2):124-129.
    [15]
    YuanM,QianX,HuangY,et al.Th17 activation and Th17/Treg imbalance in prolonged anterior intraocular inflammation after ocular alkali burn[J].Int J Mol Sci,2022,23(13):7075.DOI: 10.3390/ijms23137075.
    [16]
    LuckME,HerrnreiterCJ,ChoudhryMA.Gut microbial changes and their contribution to post-burn pathology[J].Shock,2021,56(3):329-344.DOI: 10.1097/SHK.0000000000001736.
    [17]
    HajialibabaeiR,SayeliFG,AghadavoodE,et al.The beneficial role of probiotics and gut microbiota in signaling pathways, immunity, apoptosis, autophagy, and intestinal barrier for effective wound healing post-burn injury[J].Microb Pathog,2025,206:107816.DOI: 10.1016/j.micpath.2025.107816.
    [18]
    HouY,KhatriP,RindyJ,et al.Single-cell transcriptional landscape of temporal neutrophil response to burn wound in larval zebrafish[J].J Immunol,2024,213(4):469-480.DOI: 10.4049/jimmunol.2400149.
    [19]
    YaoRQ,ZhaoPY,LiZX,et al.Single-cell transcriptome profiling of sepsis identifies HLA-DR(low)S100A(high) monocytes with immunosuppressive function[J].Mil Med Res,2023,10(1):27.DOI: 10.1186/s40779-023-00462-y.
    [20]
    YaoRQ,LiZX,WangLX,et al.Single-cell transcriptome profiling of the immune space-time landscape reveals dendritic cell regulatory program in polymicrobial sepsis[J].Theranostics,2022,12(10):4606-4628.DOI: 10.7150/thno.72760.
    [21]
    YıldızM,SarpdağıY,OkuyarM,et al.Segmentation and classification of skin burn images with artificial intelligence: Development of a mobile application[J].Burns,2024,50(4):966-979.DOI: 10.1016/j.burns.2024.01.007.
    [22]
    LiX,WangW,GaoQ,et al.Intelligent bacteria-targeting ZIF-8 composite for fluorescence imaging-guided photodynamic therapy of drug-resistant superbug infections and burn wound healing[J].Exploration (Beijing),2024,4(6):20230113.DOI: 10.1002/EXP.20230113.
    [23]
    GurbuzK,DasK,DemirM,et al.Impacts of intelligent monitoring technology installation and additional modalities on hand hygiene compliance in a burn center: a quasi-experimental longitudinal trial[J].Burns,2024,50(5):1307-1314.DOI: 10.1016/j.burns.2024.02.020.
    [24]
    O'TooleHJ,LoweNM,ArunV,et al.Plasma-derived extracellular vesicles (EVs) as biomarkers of sepsis in burn patients via label-free Raman spectroscopy[J].J Extracell Vesicles,2024,13(9):e12506.DOI: 10.1002/jev2.12506.
    [25]
    BoutinL,SoussiS,Garcia LavelloA,et al.Galectin-3 and soluble CD146 identify cardiorenal injuries in severe burn patients: a biomarker-based approach[J].Cardiorenal Med,2024,14(1):460-472.DOI: 10.1159/000540845.
    [26]
    MahungC,SteppWH,LongC,et al.Early expression of IL-10, IL-12, ARG1, and NOS2 genes in peripheral blood mononuclear cells synergistically correlate with patient outcome after burn injury[J].J Trauma Acute Care Surg,2022,93(5):702-711.DOI: 10.1097/TA.0000000000003602.
    [27]
    NiuZ,WeiG,LiangH,et al.Bioinformatics-led identification of potential biomarkers and inflammatory infiltrates in burn injury[J].J Burn Care Res,2023,44(6):1382-1392.DOI: 10.1093/jbcr/irad050.
    [28]
    SunP,CuiM,JingJ,et al.Deciphering the molecular and cellular atlas of immune cells in septic patients with different bacterial infections[J].J Transl Med,2023,21(1):777.DOI: 10.1186/s12967-023-04631-4.
    [29]
    BalchJA,ChenUI,LiesenfeldO,et al.Defining critical illness using immunological endotypes in patients with and without sepsis: a cohort study[J].Crit Care,2023,27(1):292.DOI: 10.1186/s13054-023-04571-x.
    [30]
    ReyesM,FilbinMR,BhattacharyyaRP,et al.An immune-cell signature of bacterial sepsis[J].Nat Med,2020,26(3):333-340.DOI: 10.1038/s41591-020-0752-4.
    [31]
    洪德江,曾婉婷,王伟,等.脓毒症免疫亚型与糖皮质激素治疗反应及预后的关系:一项潜在剖面分析研究 [J].中华烧伤与创面修复杂志.
    [32]
    PenatzerJ,BodempudiP,SchwartzD,et al.Reversibility of immune dysfunction following pediatric thermal injury[J].J Burn Care Res,2026,47(1):103-112.DOI: 10.1093/jbcr/iraf152.
    [33]
    PatilNK,LuanL,BohannonJK,et al.Frontline Science: Anti-PD-L1 protects against infection with common bacterial pathogens after burn injury[J].J Leukoc Biol,2018,103(1):23-33.DOI: 10.1002/JLB.5HI0917-360R.
    [34]
    MoradiS,FarajiN,FarzinM,et al.An insight into the use of CAR T-cell as a novel immunotherapy, to heal burn wounds[J].Burns,2023,49(5):1227-1229.DOI: 10.1016/j.burns.2022.12.020.
    [35]
    LeventogiannisK,KyriazopoulouE,AntonakosN,et al.Toward personalized immunotherapy in sepsis: the PROVIDE randomized clinical trial[J].Cell Rep Med,2022,3(11):100817.DOI: 10.1016/j.xcrm.2022.100817.
    [36]
    邓碧涵,成鑫月,祝筱梅,等.烫伤后海水浸泡合并创伤弧菌感染建立脓毒症大鼠模型 [J]. 中华烧伤与创面修复杂志.
    [37]
    ZuX,HanY,ZhouY,et al.A multifunctional injectable ε-poly-L-lysine-loaded sodium-alginate/gelatin hydrogel promotes the healing of infected wounds by regulating macrophage polarization and the skin microbiota[J/OL].Burns Trauma,2025,13:tkaf037[2025-11-04].https://pubmed.ncbi.nlm.nih.gov/41132947/.DOI: 10.1093/burnst/tkaf037.
    [38]
    ZhangH,ZhouW,WangH,et al.Hydrogel-based bioactive synthetic skin stimulates regenerative gas signaling and eliminates interfacial pathogens to promote burn wound healing[J].ACS Nano,2025,19(15):15002-15017.DOI: 10.1021/acsnano.5c01134.
    [39]
    WeiH,ZhangH,YanS,et al.3D-printed ROS-scavenging, proangiogenic, and biodegradable hydrogel for enhancing burn wound healing[J].ACS Appl Mater Interfaces,2025,17(28):39955-39966.DOI: 10.1021/acsami.5c04216.
    [40]
    HuangJ,LiuH,WangQ,et al.Effects of traditional Chinese medicine collapse stains therapy combined with burn ointment on wound healing, inflammation, and pain mediator levels in patients with second degree burns[J].Pak J Med Sci,2025,41(6):1618-1622.DOI: 10.12669/pjms.41.6.10590.
    [41]
    XuC,XiaY,JiaZ,et al.The curative effect of Shenfu-injection in the treatment of burn sepsis and its effect on the patient's immune function, HMGB, and vWF[J].Am J Transl Res,2022,14(4):2428-2435.
    [42]
    ZhangQ,WangH,ChenM,et al.Color-changeable and separable PLA/PVP/chitosan tri-layer self-pumping dressing containing astragalus for promoting the healing of infectious burn wound[J].Int J Biol Macromol,2025,321(Pt 2):146043.DOI: 10.1016/j.ijbiomac.2025.146043.
    [43]
    ZhouB,BaT,WangL,et al.Combination of sodium butyrate and probiotics ameliorates severe burn-induced intestinal injury by inhibiting oxidative stress and inflammatory response[J].Burns,2022,48(5):1213-1220.DOI: 10.1016/j.burns.2021.11.009.
    [44]
    Hassaninejad FarahaniF,MoraffahF,SamadiN,et al.Improved infectious burn wound healing by applying lyophilized particles containing probiotics and prebiotics[J].Int J Pharm,2023,636:122800.DOI: 10.1016/j.ijpharm.2023.122800.
    [45]
    PirouzzadehM,MoraffahF,SamadiN,et al.Enhancement of burn wound healing using optimized bioactive probiotic-loaded alginate films[J].Int J Biol Macromol,2025,301:140454.DOI: 10.1016/j.ijbiomac.2025.140454.
    [46]
    SchuermannLE,BergmannCB,GoetzmanH,et al.Heat-killed probiotic Lactobacillus plantarum affects the function of neutrophils but does not improve survival in murine burn injury[J].Burns,2023,49(4):877-888.DOI: 10.1016/j.burns.2022.06.015.
    [47]
    KorkmazHI,FlokstraG,WaasdorpM,et al.The complexity of the post-burn immune response: an overview of the associated local and systemic complications[J].Cells,2023,12(3):345.DOI: 10.3390/cells12030345.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(1)

    Article Metrics

    Article views (96) PDF downloads(9) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return