Li MJ,Chen HL,Ju YY,et al.A cross-sectional survey and influencing factors analysis of knowledge, attitude, and behavior of enteral nutrition implemented by nurses in burn intensive care unit[J].Chin J Burns Wounds,2023,39(9):874-881.DOI: 10.3760/cma.j.cn501225-20220522-00198.
Citation: Bai XZ,Tao K,Liu Y,et al.Effects and underlying mechanism of human adipose mesenchymal stem cells-derived exosomes on acute lung injury in septic mice[J].Chin J Burns Wounds,2024,40(12):1132-1142.DOI: 10.3760/cma.j.cn501225-20240927-00355.

Effects and underlying mechanism of human adipose mesenchymal stem cells-derived exosomes on acute lung injury in septic mice

doi: 10.3760/cma.j.cn501225-20240927-00355
Funds:

General Program of National Natural Science Foundation of China 82272269

More Information
  •   Objective  To explore the effects and underlying mechanism of human adipose mesenchymal stem cells (ADSC)-derived exosomes on acute lung injury in septic mice.  Methods  The study was an experimental study. Human ADSC of passages 4-5 were selected, and exosomes in their supernatant were isolated and extracted by differential ultracentrifugation. Exosomes were then used after identification. Twenty-four adult male BALB/c mice were selected and divided into normal control group, simple cecal ligation and puncture (CLP) group, and CLP+ADSC-exosome group according to the random number table method (the grouping method was the same below), with 8 mice in each group. The mice in simple CLP group were injected with phosphate buffer after CLP surgery (to establish an animal model of acute lung injury in septic mice), the mice in CLP+ADSC-exosome group were treated according to the corresponding group name, and the mice in normal control group were only injected with phosphate buffer. At 24 hours after surgery, the morphology of lung tissue was observed by hematoxylin-eosin staining, the apoptosis of lung tissue cells was detected by in-situ end-labeling method, the content of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in the serum of mice was detected by enzyme-linked immunosorbent assay, the content of malondialdehyde and superoxide dismutase (SOD) in lung tissue was detected by microplate reader, and the expressions of CD86 and CD206 in mouse lung tissue cells was detected by immunofluorescence method. Mouse macrophage RAW264.7 was taken and divided into blank control group, simple lipopolysaccharide (LPS) group, and LPS+ADSC-exosome group. The cells of LPS+ADSC-exosome group and simple LPS group were cultured by adding LPS+ADSC-exosome and LPS, respectively, and cells in blank control group were routinely cultured. Twelve hours after culture, the ATP content, the percentage of mitochondrial reactive oxygen species positive cells, as well as mitochondrial membrane potential in cells were detected by related detection kits. The mRNA expression levels of M1 polarization marker inducible nitric oxide synthase (iNOS), M2 polarization marker arginase-1 (Arg1), and inflammatory factors TNF-α and IL-1β in cells were detected by real-time fluorescence quantitative reverse-transcription polymerase chain reaction method. Three samples were used for mRNA expression detection, and four samples were used for the detection of the other indicators.  Results  At 24 hours after surgery, the structure of mouse lung tissues in normal control group was clear and intact without inflammatory cell infiltration. Compared with that in normal control group, the lung tissue edema as well as the infiltration of inflammatory cells of mice was much more obvious in simple CLP group. However, compared with that in simple CLP group, the lung tissue edema of mice in CLP+ADSC-exosome group was significantly alleviated, the infiltration of inflammatory cells was significantly reduced, and the cell apoptosis and necrosis were significantly improved. Twenty-four hours after surgery, compared with that in normal control group, the levels of TNF-α and IL-1β in the serum of mice in simple CLP group were significantly increased (with t values of 50.82 and 30.81, respectively, P<0.05); compared with that in simple CLP group, the levels of TNF-α and IL-1β in the serum of mice in CLP+ADSC-exosome group were significantly decreased (with t values of 16.36 and 19.25, respectively, P<0.05). Compared with that in normal control group, the content of malondialdehyde in the lung tissue of mice in simple CLP group was significantly increased (t=9.89, P<0.05); and the content of SOD was significantly decreased (t=5.01, P<0.05); compared with that in simple CLP group, the content of malondialdehyde in the lung tissue of mice in CLP+ADSC-exosome group was significantly decreased (t=4.38, P<0.05), and the content of SOD was significantly increased (t=2.97, P<0.05). Twenty-four hours after surgery, compared with that in normal control group, the proportion of CD86 positive cells in the lung tissue of mice in simple CLP group was significantly increased, and the proportion of CD206 positive cells was significantly decreased; compared with that in simple CLP group, the proportion of CD86 positive cells in the lung tissue of mice in CLP+ADSC-exosome group was significantly decreased, and the proportion of CD206 positive cells was significantly increased. After 12 hours of culture, compared with that in blank control group, the ATP content of RAW264.7 cells in simple LPS group was significantly decreased (t=6.28, P<0.05); compared with that in simple LPS group, the ATP content of RAW264.7 cells in LPS+ADSC-exosome group was significantly increased (t=4.01, P<0.05). After 12 hours of culture, compared with (22±4)% in blank control group, (40±6)% of positive cells of mitochondrial reactive oxygen species in RAW264.7 cells in simple LPS group was significantly increased (t=5.04, P<0.05); compared with that in LPS group, (30±5)% of positive cells of mitochondrial reactive oxygen species in RAW264.7 cells in LPS+ADSC-exosome group was significantly decreased (t=2.65, P<0.05). After 12 hours of culture, compared with that in blank control group, the mitochondrial membrane potential of RAW264.7 cells in simple LPS group was significantly decreased; the mitochondrial membrane potential of RAW264.7 cells in LPS+ ADSC-exosome group was between those in blank control group and simple LPS group. After 12 hours of culture, compared with that in blank control group, the mRNA expressions of TNF-α, IL-1β, and iNOS in RAW264.7 cells in simple LPS group were significantly increased (with t values of 16.51, 31.04, and 7.70, respectively, P<0.05), and the decrease in the mRNA expression of Arg1 was not statistically significant (P>0.05); compared with that in simple LPS group, the mRNA expressions of TNF-α, IL-1β, and iNOS in RAW264.7 cells in LPS+ADSC-exosome group were significantly decreased (with t values of 11.38, 22.58, and 5.28, respectively, P<0.05), and the mRNA expression of Arg1 was significantly increased (t=7.66, P<0.05).  Conclusions  Human ADSC-exosomes may play a role in improving lung injury in septic mice by improving LPS-induced mitochondrial dysfunction in mice macrophages, inhibiting the polarization of macrophages toward M1, and reducing the inflammatory response.

     

  • (1)证实烧伤ICU护士实施肠内营养的认知水平偏低,观念须及时更新,行为有待进一步规范。

    (2)证实烧伤ICU护士肠内营养认知水平的独立影响因素为其年龄(≥26岁)、最高学历(本科)、接受肠内营养知识系统培训。

    Highlights:

    (1)Proved that the burn ICU (BICU) nurses had low cognitive level in the implementation of enteral nutrition, their concept needed to be updated in time, and behavior needed to be further standardized.

    (2)Proved that the independent influencing factors of the cognitive level of enteral nutrition in BICU nurses were their age (≥26 years old), highest educational background (undergraduate), and the systematic training received in enteral nutrition knowledge.

    严重烧伤仍然是全球主要医疗保健问题 1。研究表明,严重烧伤会导致持续和长期的高代谢状态和分解代谢增加,由此产生的营养不良和热量不足会导致死亡风险增加、创面愈合延迟、多器官功能障碍和败血症发病率升高等不良临床结局 2, 3, 4, 5。因此,营养治疗成为贯穿严重烧伤整个救治过程的综合治疗措施之一,目前肠内营养是首选的营养支持方式 6, 7,经口进食是优先推荐的肠内营养方式,但对于严重烧伤,特别是合并呼吸道损伤、面部损伤的患者,经导管喂养是目前运用最多的方式。侵入性管路的使用、喂养不耐受的高发生率 8, 9、无针对性临床护理指南等现状使严重烧伤患者肠内喂养存在诸多挑战。有效的营养治疗可以保护严重烧伤患者的肠黏膜屏障及改善免疫功能,维护肠道微生态 310, 11。护士作为肠内营养治疗的主要实施者和观察者,在营养支持过程中起到关键作用,其实施肠内营养的认知水平、态度及行为直接影响患者肠内营养的治疗效果 12, 13,了解影响护士肠内营养知信行的相关因素对开展针对性系统培训至关重要。鉴于此,本研究旨在了解烧伤ICU(BICU)护士对严重烧伤患者肠内营养知信行水平现状并分析其相关影响因素,为制订这类患者肠内营养护理指南和技术规范提供参考及依据。

    本多中心横断面调查研究经陆军军医大学(第三军医大学)第一附属医院(以下简称本院)伦理委员会审批,批号为KY20190321。

    本研究团队通过查阅文献,筛选出包括欧洲国家、美国及我国相关临床实践指南和技术规范 14, 15, 16、标准 17、共识 18、专家意见 19、研究 8, 9等证据资料,自行设计严重烧伤患者肠内营养护理知信行调查问卷。利用该问卷对本院10名BICU护士进行预调查后,采用专家函询法对医学统计学、烧伤医疗、烧伤护理、营养学4个专业5名专家进行3轮征询,反馈率均为100%,最终确定的问卷包括2个部分。(1)一般资料调查问卷,包括性别、年龄、工作年限、职称、职务、最高学历、是否接受肠内营养知识系统培训,共7个指标。(2)肠内营养知信行调查问卷,包括知识、态度、行为3个维度。知识维度共8个因子,70个条目,包括烧伤肠内营养相关知识(11个条目)、肠内营养营养筛查与评估(3个条目)、肠内营养管路途径和应用(3个条目)、肠内营养制剂相关知识(3个条目)、肠内营养操作的规范执行(17个条目)、肠内营养健康教育(1个条目)、肠内营养常见并发症的预防和护理(29个条目)、肠内营养营养监测(3个条目),各条目均为单选题,回答正确计1分、回答错误计0分,满分70分,得分越高表示认知程度越好。该部分的内容效度指数为0.78,克龙巴赫α系数为0.98。态度维度共7个因子,14个条目,包括早期肠内营养的重要性(1个条目),肠内营养营养筛查的重要性(1个条目),肠内营养营养评估(胃肠耐受性、误吸风险、吞咽功能)的重要性(3个条目),肠内营养规范操作(无菌技术、速度管理、温度控制、管路管理)的重要性(4个条目),肠内营养营养监测(血糖、胃残留量、并发症监测)的重要性(3个条目),肠内营养健康教育的重要性(1个条目),护理人员掌握肠内营养知识和加强肠内营养知识、技能培训的重要性(1个条目),对各条目采用利克特5级评分法,从“完全不同意”到“完全同意”赋1~5分,满分70分,得分越高表明护士对肠内营养越重视。该部分的内容效度指数为0.94,克龙巴赫α系数为0.97。行为维度共7个因子,17个条目,包括使用营养筛查量表对患者进行动态营养风险评估(1个条目),对患者进行动态营养评估(烧伤病情、营养状态、胃肠指标、吞咽功能,4个条目),对患者进行热量/蛋白质摄入动态评估(1个条目),对患者实施肠内营养规范操作(无菌技术、速度管理、温度控制、安全管路管理、体位管理,5个条目),独立成功留置鼻胃管/鼻肠管(2个条目),对患者进行动态营养监测(血糖、胃残留量、腹内压监测,3个条目),对患者进行肠内营养健康教育(1个条目),对各条目同前从“从不”到“总是”赋1~5分,满分85分,得分越高表明护士肠内营养护理行为越好。该部分的内容效度指数为0.94,克龙巴赫α系数为0.96。最终通过“问卷星”网站发布问卷并形成网页链接和二维码。

    1.2.1   估算样本量

    采用横断面调查样本量估算公式 n=t 2 α× P× Q÷ d 2[ 20,其中 n为样本量;α为显著性水平,通常取0.05或0.01(本研究中取0.05); t为统计学量值,约为2.00(α取0.05时的固定值); P为预期的得分率; Q=1- Pd为容许误差。按肠内营养知识得分率为86.19% 21计算,在容许误差 d取8.6%的情况下,计算本研究所需样本量约为74名,考虑可能有10%的无效应答,确定调查对象至少需要83名。

    1.2.2   入选标准

    采用方便抽样法,2022年5月8日,选择本院、广东省人民医院、广西医科大学第一附属医院、青海大学附属医院、空军军医大学第二附属医院、南通大学附属医院、贵阳钢厂职工医院、昆明医科大学第二附属医院8家医院烧伤科的BICU护士作为调查对象。纳入标准:(1)注册护士;(2)独立工作满1年及以上的BICU在职在岗护士;(3)对本调查知情同意。排除标准:规范化培训、进修护士。

    本研究负责人建立多中心调研微信群,邀请各烧伤中心调研负责人入群,通过微信群进行线上培训及答疑,培训内容包括研究目的、研究对象的入选标准、调查工具的使用等。本研究负责人通过微信向各烧伤中心调研负责人推送“问卷星”网页链接和二维码,各烧伤中心调研负责人组织科室符合入选标准的护士填写调查问卷。在“问卷星”链接首页向护士说明问卷研究目的和所需时间,由护士自主确定是否参加调研,然后采用匿名方式独立认真填写,并由各医院调研负责人负责监督,60 min内回收问卷,有漏项者无法提交问卷;每个IP地址只能提交1次问卷。

    采用SPSS 23.0统计软件进行数据分析。为使问卷中知识、态度、行为各因子具有可比性,采用标准分进行统计分析,因子标准分=(因子实际得分÷因子可能最高得分)×100。将护士按照一般资料进行分类,统计其肠内营养知识、态度、行为的总得分,计数资料数据以频数(百分比)表示;计量资料数据均以 x ¯ ± s 表示,符合正态分布的数据行独立样本 t检验或单因素方差分析,不符合正态分布的数据偏态不明显时,行Mann-Whitney U 检验或Kruskal-Wallis H 检验。结合单因素分析结果及临床经验和意义,选取自变量,以BICU护士肠内营养知识、态度、行为总得分为因变量,建立广义线性模型,筛选BICU护士肠内营养知识、态度、行为总得分的独立影响因素。 P<0.05为差异有统计学意义。

    接受本次调查的护士共107名,收回有效问卷107份,有效回收率为100%。

    BICU护士肠内营养知信行问卷中,知识总得分为(44±13)分,各因子得分由低到高依次为肠内营养营养筛查与评估(29±30)分、肠内营养制剂相关知识(38±16)分、肠内营养营养监测(41±43)分、肠内营养常见并发症的预防和护理(43±14)分、烧伤肠内营养相关知识(46±14)分、肠内营养操作的规范执行(47±13)分、肠内营养管路途径和应用(49±28)分、肠内营养健康教育(70±46)分。态度总得分为(87±15)分,各因子得分由低到高依次为早期肠内营养的重要性(77±21)分、肠内营养营养监测的重要性(87±16)分、肠内营养营养评估的重要性(88±15)分、肠内营养规范操作的重要性(88±16)分、肠内营养营养筛查的重要性(88±18)分、护理人员掌握肠内营养知识和加强肠内营养知识、技能培训的重要性(89±17)分、肠内营养健康教育的重要性(89±17)分。行为总得分为(70±19)分,各因子得分由低到高依次为独立成功留置鼻胃管/鼻肠管(61±23)分、对患者进行动态营养监测(65±24)分、使用营养筛查量表对患者进行动态营养风险评估(69±26)分、对患者进行动态营养评估(72±22)分、对患者进行热量/蛋白质摄入动态评估(73±18)分、对患者实施肠内营养规范操作(74±20)分、对患者进行肠内营养健康教育(78±21)分。

    本次调查的107名BICU护士大多数为女性;年龄为22~48(31±6)岁,以26~35岁为主;工作年限1~5、6~10、≥11年的人数分布较平均;大多数护士职称为护师,职务为责任护士,最高学历为本科;不到一半的护士接受过肠内营养知识系统培训。不同年龄、工作年限、职称、职务、最高学历、是否接受肠内营养知识系统培训的BICU护士肠内营养知识总得分比较,差异均有统计学意义( P<0.05);不同性别的BICU护士肠内营养知识总得分比较,差异无统计学意义( P>0.05);不同性别、年龄、工作年限、职称、职务、最高学历、是否接受肠内营养知识系统培训的BICU护士肠内营养态度、行为总得分比较,差异均无统计学意义( P>0.05)。见 表1

    表1  107名烧伤重症监护病房护士不同一般资料下肠内营养知识、态度、行为总得分比较
    表1.  Comparison of total scores of knowledge, attitude, and behavior of enteral nutrition among 107 nurses in burn intensive care unit with different general data
    项目与类别 人数 构成比(%) 知识总得分(分, x ¯ ± s 态度总得分(分, x ¯ ± s 行为总得分(分, x ¯ ± s 统计量值1 P 1 统计量值2 P 2 统计量值3 P 3
    性别
    9 8.4 34±10 62±5 55±13 Z=-0.83 0.401 Z=-0.56 0.575 t=-0.81 0.419
    98 91.6 30±9 60±11 60±16
    年龄(岁)
    21~25 19 17.8 22±3 60±12 59±14 H=27.36 <0.001 H=4.02 0.259 F= 0.68 0.536
    26~30 38 35.5 31±9 60±10 59±16
    31~35 30 28.0 35±9 63±5 62±18
    ≥36 20 18.7 31±8 61±5 56±14
    工作年限(年)
    1~5 32 29.9 26±7 59±10 56±16 H=15.27 <0.001 H=0.74 0.688 F=3.96 0.052
    6~10 38 35.5 31±10 61±11 63±16
    ≥11 37 34.6 34±8 61±10 58±16
    职称
    护士 26 24.3 27±9 61±11 60±18 H=10.19 0.006 H=0.58 0.745 F=0.90 0.407
    护师 47 43.9 30±9 60±9 58±15
    主管护师及以上 34 31.8 34±8 61±11 61±19
    职务
    责任护士 94 87.9 29±9 60±11 61±16 Z=-3.33 0.001 Z=-0.31 0.754 t=0.85 0.394
    责任组长及护士长 13 12.1 39±7 64±4 57±14
    最高学历
    专科 9 8.4 23±3 56±16 56±18 Z=-2.59 0.010 Z=-0.85 0.392 t=-0.57 0.564
    本科 98 91.6 31±9 61±10 60±16
    是否接受肠内营养知识系统培训
    44 41.1 38±7 61±14 60±19 Z=-6.46 <0.001 Z=-1.52 0.128 t=0.50 0.611
    63 58.9 26±7 61±7 59±14
    注:统计量值1、 P 1值,统计量值2、 P 2值,统计量值3、 P 3值分别为不同一般资料下护士肠内营养知识、态度、行为总得分比较所得
    下载: 导出CSV 
    | 显示表格

    根据单因素分析结果,再结合临床经验和意义,最终将性别、年龄、工作年限、职称、职务、最高学历、是否接受肠内营养知识系统培训作为BICU护士肠内营养态度、行为得分自变量,将除性别、职称、工作年限外的4个自变量作为BICU护士肠内营养知识得分的自变量,并分别赋值(性别:男=1、女=2,年龄:21~25岁=1、26~30岁=2、31~35岁=3、≥36岁=4,工作年限:1~5年=1、6~10年=2、≥11年=3,职称:护士=1、护师=2、主管护师及以上=3,职务:责任护士=1、责任组长及护士长=2,最高学历:专科=1、本科=2,是否接受肠内营养知识系统培训:否=1、是=2),以BICU护士肠内营养知识、态度、行为总得分为因变量建立广义线性模型。结果显示,年龄(26~30、31~35、≥36岁)、最高学历(本科)、接受肠内营养知识系统培训均是BICU护士肠内营养知识总得分的独立影响因素( P<0.05),见 表2。不同性别、年龄(26~30、31~35、≥36岁)、工作年限(6~10、≥11年)、职称(护师、主管护师及以上)、职务、最高学历、是否接受肠内营养知识系统培训下均无BICU护士肠内营养态度、行为总得分的独立影响因素(95%置信区间分别为-0.19~0.14、-0.21~0.17、-0.24~0.24、-0.10~0.46、-0.11~0.17、-0.27~0.14、-0.14~0.11、-0.20~0.12、-0.11~0.16、-0.12~0.24、-0.08~0.09,-17.21~5.80、-8.01~17.90、-19.96~12.81、-11.78~26.81、-2.73~16.46、-14.28~13.26、-10.93~5.94、-6.36~15.97、-17.75~1.36、-13.39~11.44、-3.57~8.40,标准化回归系数分别为-0.02、0.01、0、0.18、0.03、-0.06、-0.01、-0.04、0.02、0.06、0.07,-5.70、4.94、-3.57、7.51、6.86、-0.50、-2.49、4.80、-8.19、-0.97、2.41, P>0.05)。

    表2  107名烧伤重症监护病房护士肠内营养知识总得分的广义线性模型分析结果
    表2.  Generalized linear model analysis results of the total scores of knowledge of enteral nutrition of 107 nurses in burn intensive care unit
    因素与分类 标准化回归系数 标准误 95%置信区间 Wald P
    年龄(岁)
    26~30 0.24 0.06 0.12~0.36 14.86 <0.001
    31~35 0.15 0.07 0~0.30 3.95 0.047
    ≥36 0.17 0.07 0.03~0.31 5.69 0.017
    职务责任组长及护士长 0.11 0.06 -0.02~0.24 2.71 0.100
    最高学历本科 0.17 0.07 0.01~0.32 4.58 0.032
    接受肠内营养知识系统培训 0.29 0.05 0.19~0.40 30.01 <0.001
    下载: 导出CSV 
    | 显示表格

    本研究对107名BICU护士一般资料的调查结果显示,女性仍为护理工作的主体,年龄为22~48岁,工作年限的分布呈正态趋势,职称上以初级和中级为主,最高学历以本科为主,这些资料反映了各地区大型烧伤中心ICU护士的人口学特征、文化背景等,也为进一步分析影响护士肠内营养知信行现状的因素提供了数据支持。

    本研究显示,BICU护士肠内营养知识总得分为(44±13)分,提示BICU护士对严重烧伤患者肠内营养知识掌握度偏低,这一数据也低于近年来国内关于临床护士肠内营养知识掌握度的调查结果 1321, 22, 23。作为BICU护士,对肠内营养知识认知水平低显然不符合开展肠内营养护理工作的要求。本研究显示,BICU护士肠内营养知识总得分及各因子得分中除肠内营养健康教育外均偏低(标准分<60分),各因子得分由低到高排序为肠内营养营养筛查与评估、肠内营养制剂相关知识、肠内营养营养监测、肠内营养常见并发症的预防和护理、烧伤肠内营养相关知识、肠内营养操作的规范执行、肠内营养管路途径和应用、肠内营养健康教育。分析原因,目前关于严重烧伤患者营养支持和喂养做法的数据较少,在烧伤环境中的营养风险筛查、营养评估、营养配方、营养监测等方面缺乏共识,无针对这类患者肠内营养的护理指南指导临床工作及知识培训,这些现状严重影响BICU护士肠内营养知识框架的建立。同时在日常护理工作中,由于工作量繁重、对严重烧伤后复杂的病情变化了解有限等原因,BICU护士在实施肠内营养过程中通常被动执行医嘱,导致其对自身角色定位不清晰,学习营养知识的主动性、自觉性降低。本研究中BICU护士肠内营养操作的规范执行标准分<60分,这部分内容包括肠内营养输注速度、体位管理、无菌技术原则、喂养管维护等,这些知识均在欧洲营养支持指南、美国重症营养支持指南和中华护理学会制订的护理团队标准中出现,且是临床护理工作的一部分,本应该被很好地掌握,但得分仍较低。由此可见,BICU护士应加强对循证指南的自主学习意识,其肠内营养知识有待系统培训;同时,提示护理管理者应加强护理实践规范的建立。

    进一步分析表明,年龄31~35岁、工作年限长、高职称、责任组长及护士长职务、高学历、接受肠内营养知识系统培训的BICU护士肠内营养知识得分偏高。对BICU护士肠内营养知识得分进行广义线性模型分析,纳入单因素分析中有统计学意义的指标时,须结合既往研究和临床经验,将互相之间无明确影响的指标纳入自变量。既往研究表明,接受培训可显著提高护士的肠内营养知识水平 12, 13,而接受肠内营养知识系统培训护士的选拔与职称、工作年限高度相关 24,因此职称、工作年限不纳为自变量。本研究显示,年龄(26~30、31~35、≥36岁)、最高学历(本科)、接受肠内营养知识系统培训是BICU护士肠内营养知识得分的独立影响因素。分析原因如下,随着年龄、学历的增加,护理人员的护理经验和理论知识逐渐丰富,参与营养护理工作增多,对营养护理的认知增加。提示护理管理者在开展团队肠内营养知识系统培训时,应合理利用自身优势,考虑不同层级临床护士的知识水平差异和后疫情时代的背景,采取多元化的培训形式,发挥“老带青、青促老”的作用,因地制宜地开展营养护理教育。

    本研究显示,BICU护士肠内营养态度总得分为(87±15)分,不同性别、年龄、工作年限、职称、职务、最高学历及是否接受肠内营养知识系统培训的BICU护士肠内营养态度总得分相近。总体来说,BICU护士实施肠内营养态度积极,但对早期肠内营养的重要性认识不足,而欧洲营养支持指南指出,在理想状态下,严重烧伤患者伤后24 h内即可进行肠内营养 14,造成这种观念偏差的原因可能是由于早期肠内营养的有效实施仍然是严重烧伤领域的待解难题 8, 925,这在一定程度上制约了BICU护士实施早期肠内营养的积极性,提示护理管理者在加强团队知识培训的基础上,还需要更多临床实践与循证科研手段的支持,以进一步强化护士对早期肠内营养重要性的认知。

    本研究显示,BICU护士肠内营养行为总得分为(70±19)分,独立成功留置鼻胃管/鼻肠管、对患者进行动态营养监测、对患者进行动态营养风险评估是其中的薄弱环节;BICU护士独立成功留置鼻胃管/鼻肠管行为得分低,其中独立成功留置鼻肠管得分最低,而研究显示鼻肠管在肠内营养耐受和能量补充方面比鼻胃管更有效 16。分析原因可能是鼻肠管置入术通常需要在超声引导下进行,仪器的应用增加了置管时间和操作难度 26, 27,但另一方面鼻肠管在重症护理领域的应用已经非常普及,而BICU护士独立成功留置鼻肠管得分最低,因此护理管理者应重视对相关技术的培训从而提高护理人员技术能力。严重烧伤后的营养监测仍有很大挑战,最常见指标体重不能可靠监测严重烧伤患者营养状况,还需要对液体出入量、血糖、尿素氮、甘油三酯等众多的临床检验指标进行分析及监测 10,这部分本就是护士的弱项,提示应提倡多学科协作模式,打造包括临床医师、护士、药师、临床营养师等专业人员在内的肠内营养多学科团队,更好地服务于患者。

    研究显示,营养风险筛查2002量表作为严重烧伤患者进行营养风险筛查的主要工具 28,虽然是基于循证基础的高级别工具 29,但因未考虑严重烧伤患者急性应激、炎症反应下的高代谢状态和肌肉损耗等因素,不能准确评估严重烧伤患者的营养风险 230。目前缺乏针对烧伤患者有效营养风险评估的工具,这造成BICU护士在肠内营养风险筛查方面知识缺乏和行为欠规范的现状,提示应加快建立统一的标准进行营养风险筛查,确保治疗的同质性。

    综上所述,BICU护士实施肠内营养的认知水平偏低,观念须及时更新,行为有待进一步规范。BICU护士肠内营养知识水平与其年龄、学历、接受肠内营养知识系统培训相关。因此,护理管理人员应根据不同特征BICU护士肠内营养知信行现状探索多元化培训形式,开展高质量系统培训,加强循证指南学习,进一步规范临床护理行为。本研究也存在一定的局限性,自制的严重烧伤患者肠内营养护理知信行调查问卷仅经5名专家评定,问卷有效性低,影响了结论的可信度,但对严重烧伤患者肠内营养临床护理指南和技术规范的建立仍具有一定参考意义。

  • [1]
    LongME, MallampalliRK, HorowitzJC. Pathogenesis of pneumonia and acute lung injury[J]. Clin Sci (Lond), 2022,136(10):747-769. DOI: 10.1042/CS20210879.
    [2]
    RawalG, YadavS, KumarR. Acute respiratory distress syndrome: an update and review[J]. J Transl Int Med, 2018,6(2):74-77. DOI: 10.1515/jtim-2016-0012.
    [3]
    JohnsonER, MatthayMA. Acute lung injury: epidemiology, pathogenesis, and treatment[J]. J Aerosol Med Pulm Drug Deliv, 2010,23(4):243-252. DOI: 10.1089/jamp.2009.0775.
    [4]
    LuhSP, ChiangCH. Acute lung injury/acute respiratory distress syndrome (ALI/ARDS): the mechanism, present strategies and future perspectives of therapies[J]. J Zhejiang Univ Sci B, 2007,8(1):60-69. DOI: 10.1631/jzus.2007.B0060.
    [5]
    LocatiM, CurtaleG, DiversityMantovani A., mechanisms, and significance of macrophage plasticity[J]. Annu Rev Pathol, 2020,15:123-147. DOI: 10.1146/annurev-pathmechdis-012418-012718.
    [6]
    OishiY, ManabeI. Macrophages in inflammation, repair and regeneration[J]. Int Immunol, 2018,30(11):511-528. DOI: 10.1093/intimm/dxy054.
    [7]
    GibbingsSL, ThomasSM, AtifSM, et al. Three unique interstitial macrophages in the murine lung at steady state[J]. Am J Respir Cell Mol Biol, 2017,57(1):66-76. DOI: 10.1165/rcmb.2016-0361OC.
    [8]
    AggarwalNR, KingLS, D'AlessioFR. Diverse macrophage populations mediate acute lung inflammation and resolution[J]. Am J Physiol Lung Cell Mol Physiol, 2014,306(8):L709-725. DOI: 10.1152/ajplung.00341.2013.
    [9]
    SchumackerPT, GillespieMN, NakahiraK, et al. Mitochondria in lung biology and pathology: more than just a powerhouse[J]. Am J Physiol Lung Cell Mol Physiol, 2014,306(11):L962-974. DOI: 10.1152/ajplung.00073.2014.
    [10]
    KellnerM, NoonepalleS, LuQ, et al. ROS signaling in the pathogenesis of acute lung injury (ALI) and acute respiratory distress syndrome (ARDS)[J]. Adv Exp Med Biol, 2017,967:105-137. DOI: 10.1007/978-3-319-63245-2_8.
    [11]
    TanHY, WangN, LiS, et al. The reactive oxygen species in macrophage polarization: reflecting its dual role in progression and treatment of human diseases[J]. Oxid Med Cell Longev, 2016,2016:2795090. DOI: 10.1155/2016/2795090.
    [12]
    Van den BosscheJ, BaardmanJ, OttoNA, et al. Mitochondrial dysfunction prevents repolarization of inflammatory macrophages[J]. Cell Rep, 2016,17(3):684-696. DOI: 10.1016/j.celrep.2016.09.008.
    [13]
    邱煜程, 周显玉, 刘菲, 等. 间充质干细胞及其外泌体在移植中的应用进展[J].组织工程与重建外科杂志,2023,19(2):184-188. DOI: 10.3969/j.issn.1673-0364.2023.02.016.
    [14]
    YuT, LiuH, GaoM, et al. Dexmedetomidine regulates exosomal miR-29b-3p from macrophages and alleviates septic myocardial injury by promoting autophagy in cardiomyocytes via targeting glycogen synthase kinase3β[J/OL]. Burns Trauma, 2024,12:tkae042[2024-09-27].https://pubmed.ncbi.nlm.nih.gov/39502342/. DOI: 10.1093/burnst/tkae042.
    [15]
    蒲倩, 修光辉, 孙洁, 等. 间充质干细胞外泌体在脓毒症多器官功能障碍中作用的研究进展[J].中华危重病急救医学,2021,33(6):757-760. DOI: 10.3760/cma.j.cn121430-20200908-00620.
    [16]
    HuQ, LyonCJ, FletcherJK, et al. Extracellular vesicle activities regulating macrophage- and tissue-mediated injury and repair responses[J]. Acta Pharm Sin B, 2021,11(6):1493-1512. DOI: 10.1016/j.apsb.2020.12.014.
    [17]
    JingW, WangH, ZhanL, et al. Extracellular vesicles, new players in sepsis and acute respiratory distress syndrome[J]. Front Cell Infect Microbiol, 2022,12:853840. DOI: 10.3389/fcimb.2022.853840.
    [18]
    HommaK, BazhanovN, HashimotoK, et al. Mesenchymal stem cell-derived exosomes for treatment of sepsis[J]. Front Immunol, 2023,14:1136964. DOI: 10.3389/fimmu.2023.1136964.
    [19]
    GongT, LiuYT, FanJ. Exosomal mediators in sepsis and inflammatory organ injury: unraveling the role of exosomes in intercellular crosstalk and organ dysfunction[J]. Mil Med Res, 2024,11(1):24. DOI: 10.1186/s40779-024-00527-6.
    [20]
    BaiX, LiJ, LiL, et al. Extracellular vesicles from adipose tissue-derived stem cells affect Notch-miR148a-3p axis to regulate polarization of macrophages and alleviate sepsis in mice[J]. Front Immunol, 2020,11:1391. DOI: 10.3389/fimmu.2020.01391.
    [21]
    DejagerL, PinheiroI, DejonckheereE, et al. Cecal ligation and puncture: the gold standard model for polymicrobial sepsis?[J]. Trends Microbiol, 2011,19(4):198-208. DOI: 10.1016/j.tim.2011.01.001.
    [22]
    JiaoY, ZhangT, ZhangC, et al. Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury[J]. Crit Care, 2021,25(1):356. DOI: 10.1186/s13054-021-03775-3.
    [23]
    BaiX, HeT, LiuY, et al. Acetylation-dependent regulation of notch signaling in macrophages by SIRT1 affects sepsis development[J]. Front Immunol, 2018,9:762. DOI: 10.3389/fimmu.2018.00762.
    [24]
    蔡维霞, 沈括, 曹涛, 等. 人脂肪间充质干细胞来源外泌体对脓毒症小鼠肺血管内皮细胞损伤的影响及其机制[J].中华烧伤与创面修复杂志,2022,38(3):266-275. DOI: 10.3760/cma.j.cn501120-20211020-00362.
    [25]
    ShenK, WangX, WangY, et al. miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury[J]. Redox Biol, 2023,62:102655. DOI: 10.1016/j.redox.2023.102655.
    [26]
    WuH, WangY, ZhangY, et al. Breaking the vicious loop between inflammation, oxidative stress and coagulation, a novel anti-thrombus insight of nattokinase by inhibiting LPS-induced inflammation and oxidative stress[J]. Redox Biol, 2020,32:101500. DOI: 10.1016/j.redox.2020.101500.
    [27]
    XuH, QiQ, YanX. Myricetin ameliorates sepsis-associated acute lung injury in a murine sepsis model[J]. Naunyn Schmiedebergs Arch Pharmacol, 2021,394(1):165-175. DOI: 10.1007/s00210-020-01880-8.
    [28]
    JinC, ChenJ, GuJ, et al. Gut-lymph-lung pathway mediates sepsis-induced acute lung injury[J]. Chin Med J (Engl), 2020,133(18):2212-2218. DOI: 10.1097/CM9.0000000000000928.
    [29]
    YehyaN, SmithL, ThomasNJ, et al. Definition, incidence, and epidemiology of pediatric acute respiratory distress syndrome: from the second pediatric acute lung injury consensus conference[J]. Pediatr Crit Care Med, 2023,24(12 Suppl 2):S87-98. DOI: 10.1097/PCC.0000000000003161.
    [30]
    WangS, HuL, FuY, et al. Inhibition of IRE1α/XBP1 axis alleviates LPS-induced acute lung injury by suppressing TXNIP/NLRP3 inflammasome activation and ERK/p65 signaling pathway[J]. Respir Res, 2024,25(1):417. DOI: 10.1186/s12931-024-03044-1.
    [31]
    ButtY, KurdowskaA, AllenTC. Acute lung injury: a clinical and molecular review[J]. Arch Pathol Lab Med, 2016,140(4):345-350. DOI: 10.5858/arpa.2015-0519-RA.
    [32]
    赵松韵, 万志杰, 曹曦元, 等. 靶向DNA损伤应答在小细胞肺癌中的作用研究进展[J].解放军医学杂志,2022,47(8):838-844. DOI: 10.11855/j.issn.0577-7402.2022.08.0838.
    [33]
    李林, 邢福席, 付全有, 等. 脓毒症急性肺损伤治疗的研究进展[J].中华医院感染学杂志,2024,34(1):149-155. DOI: 10.11816/cn.ni.2024-236123.
    [34]
    ZhangW, ChenH, XuZ, et al. Liensinine pretreatment reduces inflammation, oxidative stress, apoptosis, and autophagy to alleviate sepsis acute kidney injury[J]. Int Immunopharmacol, 2023,122:110563. DOI: 10.1016/j.intimp.2023.110563.
    [35]
    Bar-OrD, CarrickMM, MainsCW, et al. Sepsis, oxidative stress, and hypoxia: are there clues to better treatment?[J] Redox Rep, 2015,20(5):193-197. DOI: 10.1179/1351000215Y.0000000005.
    [36]
    JoffreJ, HellmanJ. Oxidative stress and endothelial dysfunction in sepsis and acute inflammation[J]. Antioxid Redox Signal, 2021,35(15):1291-1307. DOI: 10.1089/ars.2021.0027.
    [37]
    ChenX, TangJ, ShuaiW, et al. Macrophage polarization and its role in the pathogenesis of acute lung injury/acute respiratory distress syndrome[J]. Inflamm Res, 2020,69(9):883-895. DOI: 10.1007/s00011-020-01378-2.
    [38]
    YuanY, FanG, LiuY, et al. Correction to: the transcription factor KLF14 regulates macrophage glycolysis and immune function by inhibiting HK2 in sepsis[J]. Cell Mol Immunol, 2022,19(5):650. DOI: 10.1038/s41423-022-00839-4.
    [39]
    WangX, ChenS, LuR, et al. Adipose-derived stem cell-secreted exosomes enhance angiogenesis by promoting macrophage M2 polarization in type 2 diabetic mice with limb ischemia via the JAK/STAT6 pathway[J]. Heliyon, 2022,8(11):e11495. DOI: 10.1016/j.heliyon.2022.e11495.
    [40]
    ZhaoH, ShangQ, PanZ, et al. Exosomes from adipose-derived stem cells attenuate adipose inflammation and obesity through polarizing M2 macrophages and beiging in white adipose tissue[J]. Diabetes, 2018,67(2):235-247. DOI: 10.2337/db17-0356.
    [41]
    WestAP, BrodskyIE, RahnerC, et al. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS[J]. Nature, 2011,472(7344):476-480. DOI: 10.1038/nature09973.
    [42]
    WestAP, Khoury-HanoldW, StaronM, et al. Mitochondrial DNA stress primes the antiviral innate immune response[J]. Nature, 2015,520(7548):553-557. DOI: 10.1038/nature14156.
    [43]
    HongP, YangH, WuY, et al. The functions and clinical application potential of exosomes derived from adipose mesenchymal stem cells: a comprehensive review[J]. Stem Cell Res Ther, 2019,10(1):242. DOI: 10.1186/s13287-019-1358-y.
    [44]
    WangZ, WhiteA, WangX, et al. Mitochondrial fission mediated cigarette smoke-induced pulmonary endothelial injury[J]. Am J Respir Cell Mol Biol, 2020,63(5):637-651. DOI: 10.1165/rcmb.2020-0008OC.
    [45]
    VidelaLA, MarimánA, RamosB, et al. Standpoints in mitochondrial dysfunction: underlying mechanisms in search of therapeutic strategies[J]. Mitochondrion, 2022,63:9-22. DOI: 10.1016/j.mito.2021.12.006.
    [46]
    HoffmannRF, ZarrintanS, BrandenburgSM, et al. Prolonged cigarette smoke exposure alters mitochondrial structure and function in airway epithelial cells[J]. Respir Res, 2013,14(1):97. DOI: 10.1186/1465-9921-14-97.
    [47]
    GalleyHF. Oxidative stress and mitochondrial dysfunction in sepsis[J]. Br J Anaesth, 2011, 107(1):57-64. DOI: 10.1093/bja/aer093.
    [48]
    BhattiJS, BhattiGK, ReddyPH. Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies[J]. Biochim Biophys Acta Mol Basis Dis, 2017,1863(5):1066-1077. DOI: 10.1016/j.bbadis.2016.11.010.
    [49]
    XianH, LiuY, Rundberg NilssonA, et al. Metformin inhibition of mitochondrial ATP and DNA synthesis abrogates NLRP3 inflammasome activation and pulmonary inflammation[J]. Immunity, 2021,54(7):1463-1477.e11. DOI: 10.1016/j.immuni.2021.05.004.
    [50]
    ZhongZ, LiangS, Sanchez-LopezE, et al. New mitochondrial DNA synthesis enables NLRP3 inflammasome activation[J]. Nature, 2018,560(7717):198-203. DOI: 10.1038/s41586-018-0372-z.
    [51]
    XuZ, ShenJ, LinL, et al. Exposure to irregular microplastic shed from baby bottles activates the ROS/NLRP3/Caspase-1 signaling pathway, causing intestinal inflammation[J]. Environ Int, 2023,181:108296. DOI: 10.1016/j.envint.2023.108296.
    [52]
    ChenY, YeX, EscamesG, et al. The NLRP3 inflammasome: contributions to inflammation-related diseases[J]. Cell Mol Biol Lett, 2023,28(1):51. DOI: 10.1186/s11658-023-00462-9.
    [53]
    MittalM, SiddiquiMR, TranK, et al. Reactive oxygen species in inflammation and tissue injury[J]. Antioxid Redox Signal, 2014,20(7):1126-1167. DOI: 10.1089/ars.2012.5149.
    [54]
    Shang-GuanK, WangM, HtweN, et al. Lipopolysaccharides trigger two successive bursts of reactive oxygen species at distinct cellular locations[J]. Plant Physiol, 2018,176(3):2543-2556. DOI: 10.1104/pp.17.01637.
    [55]
    CaiS, ZhaoM, ZhouB, et al. Mitochondrial dysfunction in macrophages promotes inflammation and suppresses repair after myocardial infarction[J]. J Clin Invest, 2023,133(4):e159498. DOI: 10.1172/JCI159498.
  • Relative Articles

    [1]Wang Hongyu, Ba Te, Zhou Biao, Yan Zengqiang, Wang Ruijia, Liu Lingying. Effects of applying human umbilical cord mesenchymal stem cell exosomes through different pathways to treat full-thickness skin defect wounds in mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(4): 314-322. doi: 10.3760/cma.j.cn501225-20231123-00203
    [2]Wang Di, Dou Shuqian, Wu Kongjia, Zhang Gaofei, Lou Hanxiao, Zhang Chenying, Yang Guoxun, Jin Chengbo, Que Ting, Liu Wenjun. Role and mechanism of human umbilical cord mesenchymal stem cell exosomes in wounds with escharectomy and skin grafting in scalded rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(11): 1075-1084. doi: 10.3760/cma.j.cn501225-20231201-00223
    [3]Duan Yuren, Zhao Yuchen, Song Wenyu, Wang Jiaxin, Pei Jie, Wang Xiaobing. Research advances on improving the therapeutic efficacy of mesenchymal stem cell-derived exosomes in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(7): 695-700. doi: 10.3760/cma.j.cn501225-20220912-00402
    [4]Wang Dali. Some thoughts on the research of mesenchymal stem cell exosomes and wound microenvironment[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(2): 101-105. doi: 10.3760/cma.j.cn501225-20230112-00014
    [5]Wang Yunwei, Liu Yang, Cao Peng, Zhang Qingyi, Chen Yang, Li Shaohui, Guan Hao. Effects of Krüppel-like factor 4 on inflammatory response and organ injury in septic mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(11): 1047-1056. doi: 10.3760/cma.j.cn501225-20220111-00005
    [6]Wang Yixi, Chen Junjie, Cen Ying, Li Zhengyong, Zhang Zhenyu. Research advances on exosomes derived from adipose-derived mesenchymal stem cells in promoting diabetic wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(5): 491-495. doi: 10.3760/cma.j.cn501120-20210218-00057
    [7]Cao Tao, Xiao Dan, Ji Peng, Zhang Zhi, Cai Weixia, Han Chao, Li Wen, Tao Ke. Effects of exosomes from hepatocyte growth factor-modified human adipose mesenchymal stem cells on full-thickness skin defect in diabetic mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(11): 1004-1013. doi: 10.3760/cma.j.cn501225-20220731-00330
    [8]Yin Xi, Zhou Wanfang, Hou Wenjia, Fan Mingzhi, Wu Guosheng, Liu Xiaobin, Ma Qimin, Wang Yusong, Zhu Feng. Effects of non-muscle myosin silenced bone marrow-derived mesenchymal stem cells transplantation on lung extracellular matrix in rats after endotoxin/lipopolysaccharide-induced acute lung injury[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(5): 422-433. doi: 10.3760/cma.j.cn501225-20220212-00024
    [9]Su Jianlong, Ma Kui, Zhang Cuiping, Fu Xiaobing. Effect of human decidua mesenchymal stem cells-derived exosomes on the function of high glucose-induced senescent human dermal fibroblasts and its possible mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(2): 170-183. doi: 10.3760/cma.j.cn501120-20210925-00330
    [10]Cai Weixia, Shen Kuo, Cao Tao, Wang Jing, Zhao Ming, Wang Kejia, Zhang Yue, Han Juntao, Hu Dahai, Tao Ke. Effects of exosomes from human adipose-derived mesenchymal stem cells on pulmonary vascular endothelial cells injury in septic mice and its mechanism[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(3): 266-275. doi: 10.3760/cma.j.cn501120-20211020-00362
    [11]Sun Jin, Shi Chenshuo, Wang Dali. Research advances on the roles of exosomes derived from mesenchymal stem cells in wound healing and prevention and treatment of hypertrophic scars[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(5): 495-500. doi: 10.3760/cma.j.cn501120-20200410-00220
    [12]Tang Lijun, Zhang Xiaowei, Jin Junjun, Li Xiaomei, Xu Gang. Research advances on mechanism of exosomes derived from adipose derived stem cells in the treatment of chronic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(2): 191-195. doi: 10.3760/cma.j.cn501120-20200220-00076
    [13]Shi Chenshuo, Wang Dali, Sun Jin, Yang Qinxin, Wei Zairong, Deng Chengliang, Xu Guangchao, Huang Guangtao, Xiao Shun′e. Influence of human amniotic mesenchymal stem cells on macrophage phenotypes and inflammatory factors in full-thickness skin wounds of mice[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(4): 288-296. doi: 10.3760/cma.j.cn501120-20191120-00438
    [14]Wang Shan, Yin Haiyan. Advances in exosomes derived from the mesenchymal stem cells in the treatment of sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(1): 77-80. doi: 10.3760/cma.j.issn.1009-2587.2019.01.016
    [15]Liu Mingzhuo, Gan Chunxia, Xu Bin, Guo Guanghua. Advances in the research of effects of exosomes on acute lung injury[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(7): 481-485. doi: 10.3760/cma.j.issn.1009-2587.2018.07.011
    [16]Li Mengyun, Liu Dewu, Mao Yuangui. Advances in the research of effects of exosomes derived from stem cells on wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(3): 180-184. doi: 10.3760/cma.j.issn.1009-2587.2017.03.013
    [17]Zheng Yuanhua, Xiong Bing, Deng Yiyu, Lai Wen, Zheng Shaoyi, Bian Huining, Liu Zu′an, Huang Zhifeng, Sun Chuanwei, Li Hanhua, Luo Hongmin, Ma Lianghua, Chen Hanxi. Effects of allogeneic bone marrow mesenchymal stem cells on polarization of peritoneal macrophages in rats with sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2017, 33(4): 217-223. doi: 10.3760/cma.j.issn.1009-2587.2017.04.006
    [18]Cui Shengyong, Liu Yan, Zhang Xiong. Role of dysfunction of macrophage in intractable diabetic wound[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2014, 30(3): 264-269. doi: 10.3760/cma.j.issn.1009-2587.2014.03.019
    [19]LI Na, HU Da-hai, WANG Yao-jun, HU Xiao-long, ZHANG Yue, LI Xiao-qiang, SHI Ji-hong, BAI Xiao-zhi, CAI Wei-xia. Effects of adipose-derived stem cells on renal injury in burn mice with sepsis[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(3): 249-254. doi: 10.3760/cma.j.issn.1009-2587.2013.03.007
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)  / Tables(2)

    Article Metrics

    Article views (877) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return