Volume 40 Issue 12
Dec.  2024
Turn off MathJax
Article Contents
Cai WX,Zheng Z,Liu JQ,et al.Effect of rat platelet-rich plasma gel on autologous adipose-derived mesenchymal stem cells overexpressing glia-derived neurotrophic factor[J].Chin J Burns Wounds,2024,40(12):1176-1183.DOI: 10.3760/cma.j.cn501225-20240408-00126.
Citation: Cai WX,Zheng Z,Liu JQ,et al.Effect of rat platelet-rich plasma gel on autologous adipose-derived mesenchymal stem cells overexpressing glia-derived neurotrophic factor[J].Chin J Burns Wounds,2024,40(12):1176-1183.DOI: 10.3760/cma.j.cn501225-20240408-00126.

Effect of rat platelet-rich plasma gel on autologous adipose-derived mesenchymal stem cells overexpressing glia-derived neurotrophic factor

doi: 10.3760/cma.j.cn501225-20240408-00126
Funds:

Key Research and Development Plan of Shaanxi Province of China 2022SF-399

General Program of National Natural Science Foundation of China 81471879, 82172208

More Information
  • Corresponding author: Zheng Zhao, Email: zz73553@163.com
  • Received Date: 2024-04-08
  •   Objective  To investigate the effect of rat platelet-rich plasma (PRP) gel on autologous adipose-derived mesenchymal stem cells (ADSCs) overexpressing glial-derived neurotrophic factor (GDNF).  Methods  This study was an experimental study. Five adult male Sprague-Dawley rats were used, and the primary ADSCs were obtained by collagenase digestion, and then the cells were identified successfully. The 3rd passage of ADSCs were obtained and divided into negative control group infected with unloaded adenovirus and overexpressing GDNF group infected with overexpressing GDNF adenovirus, according to random number table method (the grouping method was the same below). After 48 hours of culture, the infection of cells was observed. Five adult male Sprague-Dawley rats were used, and the PRP was obtained after collecting blood by differential centrifugation. PRP was prepared into a gel and its microstructure was observed by scanning electron microscope. The ADSCs of 3rd passage were added into the PRP solution mixture and cultured for 48 hours after gelation. The cell growth was observed by hematoxylin-eosin staining and calcein/propyl iodide staining. ADSCs infected with unloaded adenovirus and ADSCs infected with overexpressing GDNF adenovirus were routinely cultured in PRP gel. After 48 hours of culture, the cell growth was detected by calcein/propyl iodide staining. After culture for 24, 48, 72 hours and 1, 2, 3, 4 weeks, the supernatant of cell culture medium was collected, the absorbance value was determined by microplate analyzer, and the GDNF content was calculated, with the sample number of 3. After 48 hours of culture, the expression of S100 protein (a specific marker of Schwann cells) was detected by immunofluorescence assay.  Results  After 48 hours of culture, the proportions of cells infected with adenovirus in negative control group and overexpressing GDNF group were close to 90%, and the cell growth was good. The cells in negative control group grew normally. The morphology of the cells in overexpressing GDNF group changed significantly with 80%-90% of the cells having two or more protrusions, and the protrusions were interwoven to form a network wherever the cells gathered. PRP gel formed a three-dimensional network structure with different pore sizes. After 48 hours of culture, ADSCs could be well attached to PRP gel, and 98% of the cells were alive. After 48 hours of culture, ADSCs infected with unloaded adenovirus grew well and showed typical ADSC-like spindle-shaped growth. ADSCs infected with overexpressing GDNF adenovirus grew well, and most of the cells had two or more protrusions, and the protrusions were interwoven into a network. After culture for 24, 48, 72 hours and 1, 2, 3, 4 weeks, the content of GDNF in the supernatant of ADSCs infected with overexpressing GDNF adenovirus was (90±10), (133±15), (150±10), (137±15), (132±18), (120±10), and (127±16) pg/mL, which was significantly higher than (42±7), (44±7), (43±6), (47±6), (49±5), (49±6), and (51±4) pg/mL of ADSCs infected with unloaded adenovirus (with t values of 6.20, 8.08, 15.18, 9.12, 7.99, 9.61, and 7.86, respectively, P<0.05). After 48 hours of culture, the fluorescence intensity of S100 protein expression of ADSCs infected with overexpressing GDNF adenovirus was significantly stronger than that of ADSCs infected with unloaded adenovirus.  Conclusions  The prepared autologous three-dimensional PRP gel has good biocompatibility and can carry rat GDNF-overexpressing ADSCs and release GDNF slowly, inducing ADSCs to differentiate into Schwann cells that express high level of S100 protein.

     

  • loading
  • [1]
    SullivanR, DaileyT, DuncanK, et al. Peripheral nerve injury: stem cell therapy and peripheral nerve transfer[J]. Int J Mol Sci, 2016,17(12):2101. DOI: 10.3390/ijms17122101.
    [2]
    NegroS, PirazziniM, RigoniM. Models and methods to study Schwann cells[J]. J Anat, 2022,241(5):1235-1258. DOI: 10.1111/joa.13606.
    [3]
    KhanA, DiazA, BrooksAE, et al. Scalable culture techniques to generate large numbers of purified human Schwann cells for clinical trials in human spinal cord and peripheral nerve injuries[J]. J Neurosurg Spine, 2022,36(1):135-144. DOI: 10.3171/2020.11.SPINE201433.
    [4]
    ReschA, WolfS, MannA, et al. Co-culturing human adipose derived stem cells and schwann cells on spider silk-a new approach as prerequisite for enhanced nerve regeneration[J]. Int J Mol Sci, 2018,20(1):71. DOI: 10.3390/ijms20010071.
    [5]
    郭洪刚, 姚芳莲, 汪涛, 等. 富血小板血浆联合人重组骨形态形成蛋白-2诱导羊脂肪基质干细胞成骨化趋势的研究[J].中华显微外科杂志,2016,39(2):138-142. DOI: 10.3760/cma.j.issn.1001-2036.2016.02.009.
    [6]
    李绍磊, 杨有优, 刘云江, 等. 携带增强型绿色荧光蛋白的慢病毒载体转染大鼠脂肪干细胞[J].中华显微外科杂志,2014,37(2):147-151. DOI: 10.3760/cma.j.issn.1001-2036.2014.02.013.
    [7]
    张栋鑫, 肖丽玲. 脂肪干细胞联合水凝胶材料在组织工程中的研究进展及前景[J].国际生物医学工程杂志,2021,44(4):323-328. DOI: 10.3760/cma.j.cn121382-20210301-00413.
    [8]
    吴飞, 邓明, 杨越, 等. 复合脂肪源性干细胞的VPA/PRGD组织工程神经修复大鼠坐骨神经缺损的实验研究[J].中华显微外科杂志,2017,40(4):353-357. DOI: 10.3760/cma.j.issn.1001-2036.2017.04.011.
    [9]
    皮刚, 杨大平, 田晓东. ADSCs复合纤维蛋白凝胶修复大鼠坐骨神经缺损[J].中国美容整形外科杂志,2013,24(6):375-378. DOI: 10.3969/j.jssn.1673-7040.2013.06.018.
    [10]
    ZhengZ, LiuJ. GDNF-ADSCs-APG embedding enhances sciatic nerve regeneration after electrical injury in a rat model[J]. J Cell Biochem, 2019,120(9):14971-14985. DOI: 10.1002/jcb.28759.
    [11]
    刘海琴, 马华根, 唐元瑜. 原代大鼠脂肪间充质干细胞的体外培养扩增及鉴定[J].中国组织工程研究,2022,26(19):2953-2957.
    [12]
    田新立, 江波, 颜洪. 富血小板血浆对大鼠背部超长随意皮瓣成活的影响[J].中华烧伤杂志,2019,35(1):48-53. DOI: 10.3760/cma.j.issn.1009-2587.2019.01.009.
    [13]
    熊小龙富血小板血浆对大鼠跟腱断裂早期愈合的影响广州南方医科大学2015DOI:10.766/d.Y2257372

    熊小龙.富血小板血浆对大鼠跟腱断裂早期愈合的影响[D].广州:南方医科大学,2015.DOI:10.766/d.Y2257372.

    [14]
    HercherD, NguyenMQ, DworakH. Extracellular vesicles and their role in peripheral nerve regeneration[J]. Exp Neurol, 2022,350:113968. DOI: 10.1016/j.expneurol.2021.113968.
    [15]
    火艺霖, 林浩东. 周围神经损伤后再生过程中许旺细胞与巨噬细胞的交互作用[J].中华显微外科杂志,2024,47(1):104-109. DOI: 10.3760/cma.j.cn441206-20230913-00038.
    [16]
    陈焱, 肖志宏, 邢丹谋. 周围神经损伤再生与修复的研究进展[J].中华显微外科杂志,2015,38(4):413-416. DOI: 10.3760/cma.j.issn.1001-2036.2015.04.036.
    [17]
    马铭, 王艳, 袁一鸣, 等. cAMP信号通路在周围神经损伤后轴突再生中的作用研究进展[J].中华神经医学杂志,2023,22(7):718-723. DOI: 10.3760/cma.j.cn115354-20221106-00802.
    [18]
    郑前进, 韩先顺, 段勇, 等. 低频电刺激促进周围神经损伤后再生和修复的研究[J].中华实验外科杂志,2020,37(3):517-519. DOI: 10.3760/cma.j.issn.1001-9030.2020.03.036.
    [19]
    黄梦强, 朱双龙, 陈旭义, 等. 基因修饰雪旺细胞促进周围神经损伤修复再生的研究进展[J].中华创伤杂志,2017,33(7):669-672. DOI: 10.3760/cma.j.issn.1001-8050.2017.07.017.
    [20]
    Gomez-SanchezJA, PilchKS, van der LansM, et al. After nerve injury, lineage tracing shows that myelin and remak schwann cells elongate extensively and branch to form repair schwann cells, which shorten radically on remyelination[J]. J Neurosci, 2017,37(37):9086-9099. DOI: 10.1523/JNEUROSCI.1453-17.2017.
    [21]
    梁健聪, 董自清. 脂肪干细胞在周围神经损伤修复中的应用及进展[J].中华整形外科杂志,2024,40(3):337-342. DOI: 10.3760/cma.j.cn114453-20231023-00105.
    [22]
    DanovizME, BassanezeV, NakamutaJS, et al. Adipose tissue-derived stem cells from humans and mice differ in proliferative capacity and genome stability in long-term cultures[J]. Stem Cells Dev, 2011,20(4):661-670. DOI: 10.1089/scd.2010.0231.
    [23]
    陈娟, 胡晓晴, 谢雪微, 等. 脂肪干细胞侧脑室定向移植改善脑出血大鼠的神经功能[J].中华器官移植杂志,2011,32(4):240-244. DOI: 10.3760/cma.j.issn.0254-1785.2011.04.013.
    [24]
    江丽, 朱家恺, 刘小林, 等. 种植脂肪干细胞的去细胞神经修复坐骨神经缺损的实验研究[J].中华显微外科杂志,2008,31(5):350-353,405. DOI: 10.3760/cma.j.issn.1001-2036.2008.05.010.
    [25]
    黄喜军, 朱庆棠, 江丽, 等. 复合异体脂肪干细胞的异种去细胞神经修复猕猴周围神经缺损[J].中华显微外科杂志,2014,37(1):48-55. DOI: 10.3760/cma.j.issn.1001-2036.2014.01.015.
    [26]
    沈才齐, 李强, 金培生, 等. 人脐带间充质干细胞治疗糖尿病创面效果及其在体内存活、定植研究[J].徐州医科大学学报,2022,42(1):25-29. DOI: 10.3969/j.issn.2096-3882.2022.01.005.
    [27]
    Zack-WilliamsSD, ButlerPE, KalaskarDM. Current progress in use of adipose derived stem cells in peripheral nerve regeneration[J]. World J Stem Cells, 2015,7(1):51-64. DOI: 10.4252/wjsc.v7.i1.51.
    [28]
    JiangYH, LouYY, LiTH, et al. Cross-linking methods of type I collagen-based scaffolds for cartilage tissue engineering[J]. Am J Transl Res, 2022,14(2):1146-1159.
    [29]
    QinL, GaoH, XiongS, et al. Preparation of collagen/cellulose nanocrystals composite films and their potential applications in corneal repair[J]. J Mater Sci Mater Med, 2020,31(6):55. DOI: 10.1007/s10856-020-06386-6.
    [30]
    EvertsP, OnishiK, JayaramP, et al. Platelet-rich plasma: new performance understandings and therapeutic considerations in 2020[J]. Int J Mol Sci, 2020,21(20):7794. DOI: 10.3390/ijms21207794.
    [31]
    王倩, 冯颖, 祝红娟. 自体富血小板血浆凝胶在创面修复中的应用研究进展[J].中国研究型医院,2022,9(2):61-64. DOI: 10.19450/j.cnki.jcrh.2022.02.014.
    [32]
    韩福胜, 王超, 吴萃. 富血小板血浆引导骨再生在上颌美学区单牙种植修复中的应用[J].中国实用医刊,2019,46(11):24-26. DOI: 10.3760/cma.j.issn.1674-4756.2019.11.008.
    [33]
    沈明虹, 吕承晓, 段华. 富血小板血浆促进组织再生修复机制及其在子宫内膜再生修复的新探索[J].中华生殖与避孕杂志,2022,42(5):524-527. DOI: 10.3760/cma.j.cn101441-20201029-00590.
    [34]
    YuW, WangJ, YinJ. Platelet-rich plasma: a promising product for treatment of peripheral nerve regeneration after nerve injury[J]. Int J Neurosci, 2011,121(4):176-180. DOI: 10.3109/00207454.2010.544432.
    [35]
    丁旖, 刘菲, 杨军. 自体富血小板血浆在组织缺损修复中的临床应用进展[J].组织工程与重建外科杂志,2022,18(3):277-280. DOI: 10.3969/j.issn.1673-0364.2022.03.016.
    [36]
    王辉, 韩新生, 焦勇强, 等. 损伤神经周围注射自体PRP对周围神经损伤的修复效果观察[J].卒中与神经疾病,2020,27(2):200-204. DOI: 10.3969/j.issn.1007-0478.2020.02.013.
    [37]
    李立恒, 远洋, 魏建初, 等. 富血小板血浆促进面神经损伤后修复的实验研究[J].中国眼耳鼻喉科杂志,2023,23(2):151-156. DOI: 10.14166/j.issn.1671-2420.2023.02.008.
    [38]
    PereiraCT, PaxtonZJ, LiAI. Involvement of PDGF-BB and IGF-1 in activation of human Schwann cells by platelet-rich plasma[J]. Plast Reconstr Surg, 2020,146(6):825e-827e. DOI: 10.1097/PRS.0000000000007406.
    [39]
    ZhengC, ZhuQ, LiuX, et al. Effect of platelet-rich plasma (PRP) concentration on proliferation, neurotrophic function and migration of Schwann cells in vitro[J]. J Tissue Eng Regen Med, 2016,10(5):428-436. DOI: 10.1002/term.1756.
    [40]
    StolleM, SchulzeJ, RoemerA, et al. Human plasma rich in growth factors improves survival and neurite outgrowth of spiral ganglion neurons in vitro[J]. Tissue Eng Part A, 2018,24(5/6):493-501. DOI: 10.1089/ten.TEA.2017.0120.
    [41]
    LienBV, BrownNJ, RansomSC, et al. Enhancing peripheral nerve regeneration with neurotrophic factors and bioengineered scaffolds: a basic science and clinical perspective[J]. J Peripher Nerv Syst, 2020,25(4):320-334. DOI: 10.1111/jns.12414.
    [42]
    阮奕文, 袁群芳, 王传恩, 等. NGF/GDNF基因修饰神经干细胞移植对AD模型鼠前脑胆碱能神经元的保护作用[J].解剖学报,2002,33(2):126-130. DOI: 10.3321/j.issn:0529-1356.2002.02.004.
    [43]
    张小猛, 徐春玲, 庞利民, 等. BDNF/GDNF对体外三维培养的成熟视网膜神经节细胞轴突再生的促进作用[J].眼科研究,2005,23(4):400-402. DOI: 10.3760/cma.j.issn.2095-0160.2005.04.019.
    [44]
    HendersonCE, PhillipsHS, PollockRA, et al. GDNF: a potent survival factor for motoneurons present in peripheral nerve and muscle[J]. Science, 1994,266(5187):1062-1064. DOI: 10.1126/science.7973664.
    [45]
    MarquardtLM, Sakiyama-ElbertSE. GDNF preconditioning can overcome Schwann cell phenotypic memory[J]. Exp Neurol, 2015,265:1-7. DOI: 10.1016/j.expneurol.2014.12.003.
    [46]
    JesurajNJ, MarquardtLM, KwasaJA, et al. Glial cell line-derived neurotrophic factor promotes increased phenotypic marker expression in femoral sensory and motor-derived Schwann cell cultures[J]. Exp Neurol, 2014,257:10-18. DOI: 10.1016/j.expneurol.2014.04.005.
    [47]
    CaiW, LiuY, ZhangT, et al. GDNF facilitates the differentiation of ADSCs to Schwann cells and enhances nerve regeneration through GDNF/MTA1/Hes1 axis[J]. Arch Biochem Biophys, 2024,753:109893. DOI: 10.1016/j.abb.2024.109893.
    [48]
    RamerMS, PriestleyJV, McMahonSB. Functional regeneration of sensory axons into the adult spinal cord[J]. Nature,2000,403(6767):312-316. DOI: 10.1038/35002084.
    [49]
    Cintron-ColonAF, Almeida-AlvesG, VanGyseghemJM, et al. GDNF to the rescue: GDNF delivery effects on motor neurons and nerves, and muscle re-innervation after peripheral nerve injuries[J]. Neural Regen Res, 2022,17(4):748-753. DOI: 10.4103/1673-5374.322446.
    [50]
    杨晨, 胡大海, 郑朝, 等. 过表达胶质细胞源性神经营养因子的脂肪源性间充质干细胞对大鼠电损伤坐骨神经的作用[J].中华烧伤杂志,2015,31(3):199-204. DOI: 10.3760/cma.j.issn.1009-2587.2015.03.010.
    [51]
    LeeHL, YeumCE, LeeH, et al. Peripheral nerve-derived stem cell spheroids induce functional recovery and repair after spinal cord injury in rodents[J]. Int J Mol Sci, 2021,22(8):4141. DOI: 10.3390/ijms22084141.
  • 蔡维霞.mp4
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(6)

    Article Metrics

    Article views (72) PDF downloads(6) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return