Weng TT,Cai CH,Han CM,et al.Research advances on biomaterials for the delivery of growth factors to regulate wound repair[J].Chin J Burns Wounds,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.
Citation: Weng TT,Cai CH,Han CM,et al.Research advances on biomaterials for the delivery of growth factors to regulate wound repair[J].Chin J Burns Wounds,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.

Research advances on biomaterials for the delivery of growth factors to regulate wound repair

doi: 10.3760/cma.j.cn501225-20220430-00166
Funds:

National Key Research and Development Program of China 2016YFC1100803

General Program of National Natural Science Foundation of China 81772069

Wang Zhengguo Foundation for Traumatic Medicine Growth Factor Rejuvenation Plan SZYZ-TR-12

More Information
  • Wound repair is a highly coordinated and mutually regulated complex process involving various kinds of cells, extracellular matrices and cytokines. A variety of growth factors play an important regulatory role in wound healing, and it is critical to achieve effective delivery and sustained function of growth factors. In recent years, the application of biomaterials in tissue engineering has shown great potential, and the effective delivery of growth factors by biomaterials has attracted increasing attention. Based on this, this paper introduces the mechanism of related growth factors in the process of wound healing, focusing on the recent progress of biomaterial delivery of growth factors to accelerate wound healing, in order to provide new enlightenment for clinical wound treatment.

     

  • [1]
    韩春茂, 余美荣, 王新刚. 创面处理主要进展概述[J]. 中华烧伤杂志, 2018,34(12):864-867.DOI: 10.3760/cma.j.issn.1009-2587.2018.12.009.
    [2]
    NiuY, LiQ, DingY, et al. Engineered delivery strategies for enhanced control of growth factor activities in wound healing[J]. Adv Drug Deliv Rev, 2019,146:190-208.DOI: 10.1016/j.addr.2018.06.002.
    [3]
    TakeoM, LeeW, ItoM. Wound healing and skin regeneration[J]. Cold Spring Harb Perspect Med, 2015,5(1):a23267.DOI: 10.1101/cshperspect.a023267.
    [4]
    ZubairM, AhmadJ. Role of growth factors and cytokines in diabetic foot ulcer healing: a detailed review[J]. Rev Endocr Metab Disord, 2019,20(2):207-217.DOI: 10.1007/s11154-019-09492-1.
    [5]
    XiongS, ZhangX, LuP, et al. A Gelatin-sulfonated silk composite scaffold based on 3D printing technology enhances skin regeneration by stimulating epidermal growth and dermal neovascularization[J]. Sci Rep, 2017,7(1):4288.DOI: 10.1038/s41598-017-04149-y.
    [6]
    FuX, ShenZ, ChenY, et al. Randomised placebo-controlled trial of use of topical recombinant bovine basic fibroblast growth factor for second-degree burns[J]. Lancet, 1998,352(9141):1661-1664.DOI: 10.1016/S0140-6736(98)01260-4.
    [7]
    JohnsonKE, WilgusTA. Vascular endothelial growth factor and angiogenesis in the regulation of cutaneous wound repair[J]. Adv Wound Care (New Rochelle), 2014,3(10):647-661.DOI: 10.1089/wound.2013.0517.
    [8]
    ShenS, WangF, FernandezA, et al. Role of platelet-derived growth factor in type Ⅱ diabetes mellitus and its complications[J]. Diab Vasc Dis Res, 2020,17(7):1479164120942119.DOI: 10.1177/1479164120942119.
    [9]
    LichtmanMK, Otero-VinasM, FalangaV. Transforming growth factor beta (TGF-β) isoforms in wound healing and fibrosis[J]. Wound Repair Regen, 2016,24(2):215-222.DOI: 10.1111/wrr.12398.
    [10]
    KhanI, RahmanS U, TangE, et al. Accelerated burn wound healing with photobiomodulation therapy involves activation of endogenous latent TGF-β1[J]. Sci Rep, 2021,11(1):13371.DOI: 10.1038/s41598-021-92650-w.
    [11]
    HimpeE, KooijmanR. Insulin-like growth factor-I receptor signal transduction and the Janus Kinase/Signal Transducer and Activator of Transcription (JAK-STAT) pathway[J]. Biofactors, 2009,35(1):76-81.DOI: 10.1002/biof.20.
    [12]
    DasS, SinghG, MajidM, et al. Syndesome therapeutics for enhancing diabetic wound healing[J]. Adv Healthc Mater, 2016,5(17):2248-2260.DOI: 10.1002/adhm.201600285.
    [13]
    IsnerJM, PieczekA, SchainfeldR, et al. Clinical evidence of angiogenesis after arterial gene transfer of phVEGF165 in patient with ischaemic limb[J]. Lancet, 1996,348(9024):370-374.DOI: 10.1016/s0140-6736(96)03361-2.
    [14]
    SteedDL. Clinical evaluation of recombinant human platelet-derived growth factor for the treatment of lower extremity diabetic ulcers. Diabetic Ulcer Study Group[J]. J Vasc Surg, 1995,21(1):71-78;discussion 79-81.DOI: 10.1016/s0741-5214(95)70245-8.
    [15]
    石宗义. 转化生长因子β1促进关节软骨缺损修复的临床应用[J]. 中国现代医药杂志, 2006,8(7):37-39. DOI: 10.3969/j.issn.1672-9463.2006.07.016.
    [16]
    EmmersonE, CampbellL, DaviesF C, et al. Insulin-like growth factor-1 promotes wound healing in estrogen-deprived mice: new insights into cutaneous IGF-1R/ERα cross talk[J]. J Invest Dermatol, 2012,132(12):2838-2848.DOI: 10.1038/jid.2012.228.
    [17]
    BerthetM, GauthierY, LacroixC, et al. Nanoparticle-based dressing: the future of wound treatment?: (Trends in Biotechnology 35, 770-784, 2017)[J]. Trends Biotechnol, 2018,36(1):119.DOI: 10.1016/j.tibtech.2017.08.007.
    [18]
    DesmetCM, PréatV, GallezB. Nanomedicines and gene therapy for the delivery of growth factors to improve perfusion and oxygenation in wound healing[J]. Adv Drug Deliv Rev, 2018,129:262-284.DOI: 10.1016/j.addr.2018.02.001.
    [19]
    ReckhenrichAK, HopfnerU, KrötzF, et al. Bioactivation of dermal scaffolds with a non-viral copolymer-protected gene vector[J]. Biomaterials, 2011,32(7):1996-2003.DOI: 10.1016/j.biomaterials.2010.11.022.
    [20]
    McKnightCD, WinnSR, GongX, et al. Revascularization of rat fasciocutaneous flap using CROSSEAL with VEGF protein or plasmid DNA expressing VEGF[J]. Otolaryngol Head Neck Surg, 2008,139(2):245-249.DOI: 10.1016/j.otohns.2008.04.014.
    [21]
    JeschkeMG, KleinD. Liposomal gene transfer of multiple genes is more effective than gene transfer of a single gene[J]. Gene Ther, 2004,11(10):847-855.DOI: 10.1038/sj.gt.3302229.
    [22]
    ChereddyKK, LopesA, KoussoroplisS, et al. Combined effects of PLGA and vascular endothelial growth factor promote the healing of non-diabetic and diabetic wounds[J]. Nanomedicine, 2015,11(8):1975-1984.DOI: 10.1016/j.nano.2015.07.006.
    [23]
    GuoR, XuS, MaL, et al. The healing of full-thickness burns treated by using plasmid DNA encoding VEGF-165 activated collagen-chitosan dermal equivalents[J]. Biomaterials, 2011,32(4):1019-1031.DOI: 10.1016/j.biomaterials.2010.08.087.
    [24]
    O'DwyerJ, CullenM, FattahS, et al. Development of a sustained release nano-in-gel delivery system for the chemotactic and angiogenic growth factor stromal-derived factor 1α[J]. Pharmaceutics, 2020,12(6):513.DOI: 10.3390/pharmaceutics12060513.
    [25]
    ImGB, KimYH, KimYJ, et al. Enhancing the wound healing effect of conditioned medium collected from mesenchymal stem cells with high passage number using bioreducible nanoparticles[J]. Int J Mol Sci, 2019,20(19).DOI: 10.3390/ijms20194835.
    [26]
    LaiHJ, KuanCH, WuHC, et al. Tailored design of electrospun composite nanofibers with staged release of multiple angiogenic growth factors for chronic wound healing[J]. Acta Biomater, 2014,10(10):4156-4166.DOI: 10.1016/j.actbio.2014.05.001.
    [27]
    MariiaK, ArifM, ShiJ, et al. Novel chitosan-ulvan hydrogel reinforcement by cellulose nanocrystals with epidermal growth factor for enhanced wound healing: In vitro and in vivo analysis[J]. Int J Biol Macromol, 2021,183:435-446.DOI: 10.1016/j.ijbiomac.2021.04.156.
    [28]
    LeeYH, HongYL, WuTL. Novel silver and nanoparticle- encapsulated growth factor co-loaded chitosan composite hydrogel with sustained antimicrobility and promoted biological properties for diabetic wound healing[J]. Mater Sci Eng C Mater Biol Appl, 2021,118:111385.DOI: 10.1016/j.msec.2020.111385.
    [29]
    HajimiriM, ShahverdiS, EsfandiariMA, et al. Preparation of hydrogel embedded polymer-growth factor conjugated nanoparticles as a diabetic wound dressing[J]. Drug Dev Ind Pharm, 2016,42(5):707-719.DOI: 10.3109/03639045.2015.1075030.
    [30]
    XiaG, LiuY, TianM, et al. Nanoparticles/thermosensitive hydrogel reinforced with chitin whiskers as a wound dressing for treating chronic wounds[J]. J Mater Chem B, 2017,5(17):3172-3185.DOI: 10.1039/c7tb00479f.
    [31]
    LosiP, BrigantiE, ErricoC, et al. Fibrin-based scaffold incorporating VEGF- and bFGF-loaded nanoparticles stimulates wound healing in diabetic mice[J]. Acta Biomater, 2013,9(8):7814-7821.DOI: 10.1016/j.actbio.2013.04.019.
    [32]
    TokatlianT, CamC, SeguraT. Porous hyaluronic acid hydrogels for localized nonviral DNA delivery in a diabetic wound healing model[J]. Adv Healthc Mater, 2015,4(7):1084-1091.DOI: 10.1002/adhm.201400783.
    [33]
    TanhaS, Rafiee-TehraniM, AbdollahiM, et al. G-CSF loaded nanofiber/nanoparticle composite coated with collagen promotes wound healing in vivo[J]. J Biomed Mater Res A, 2017,105(10):2830-2842.DOI: 10.1002/jbm.a.36135.
    [34]
    ZhuK, WuM, LaiH, et al. Nanoparticle-enhanced generation of gene-transfected mesenchymal stem cells for in vivo cardiac repair[J]. Biomaterials, 2016,74:188-199.DOI: 10.1016/j.biomaterials.2015.10.010.
    [35]
    LiM, QiuL, HuW, et al. Genetically-modified bone mesenchymal stem cells with TGF-β3 improve wound healing and reduce scar tissue formation in a rabbit model[J]. Exp Cell Res, 2018,367(1):24-29.DOI: 10.1016/j.yexcr.2018.02.006.
    [36]
    LiS, TangQ, XuH, et al. Improved stability of KGF by conjugation with gold nanoparticles for diabetic wound therapy[J]. Nanomedicine (Lond), 2019,14(22):2909-2923.DOI: 10.2217/nnm-2018-0487.
    [37]
    PanA, ZhongM, WuH, et al. Topical application of keratinocyte growth factor conjugated gold nanoparticles accelerate wound healing[J]. Nanomedicine, 2018,14(5):1619-1628.DOI: 10.1016/j.nano.2018.04.007.
    [38]
    LeeYH, LinSJ. Chitosan/PVA hetero-composite hydrogel containing antimicrobials, perfluorocarbon nanoemulsions, and growth factor-loaded nanoparticles as a multifunctional dressing for diabetic wound healing: synthesis, characterization, and in vitro/in vivo evaluation[J]. Pharmaceutics, 2022,14(3).DOI: 10.3390/pharmaceutics14030537.
    [39]
    XieZ, ParasCB, WengH, et al. Dual growth factor releasing multi-functional nanofibers for wound healing[J]. Acta Biomater, 2013,9(12):9351-9359.DOI: 10.1016/j.actbio.2013.07.030.
    [40]
    ChengB, JiangY, FuX, et al. Epidemiological characteristics and clinical analyses of chronic cutaneous wounds of inpatients in China: prevention and control[J]. Wound Repair Regen, 2020,28(5):623-630.DOI: 10.1111/wrr.12825.
    [41]
    YangY, XiaT, ChenF, et al. Electrospun fibers with plasmid bFGF polyplex loadings promote skin wound healing in diabetic rats[J]. Mol Pharm, 2012,9(1):48-58.DOI: 10.1021/mp200246b.
    [42]
    VeithA P, HendersonK, SpencerA, et al. Therapeutic strategies for enhancing angiogenesis in wound healing[J]. Adv Drug Deliv Rev, 2019,146:97-125.DOI: 10.1016/j.addr.2018.09.010.
  • Relative Articles

    [1]Luo Gaoxing, Zhou Xuan. Application of advanced biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 26-32. doi: 10.3760/cma.j.cn501225-20231128-00211
    [2]Li Wei, Kong Weishi, Bao Yulu, Sun Yu. Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1090-1095. doi: 10.3760/cma.j.cn501225-20221123-00502
    [3]Peng Yu, Meng Hao, Li Pinxue, Jiang Yufeng, Fu Xiaobing. Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(3): 290-295. doi: 10.3760/cma.j.cn501225-20220407-00126
    [4]Li Yang, Xi Taotao, Zheng Dongmei, Ge Jun, Luo Xiao'e, Wang Lin. Recent advances of skin tissue engineering based on three-dimensional bioprinting technology[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1096-1100. doi: 10.3760/cma.j.cn501225-20230131-00029
    [5]Liu Yifan, Jiang Zhaoqi, Huang Yao, Ni Pengwen, Xie Ting. Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 650-660. doi: 10.3760/cma.j.cn501120-20210401-00113
    [6]Chen Jiqiu, Zhu Shihui. Research advances on the construction of artificial dermal scaffolds based on biomaterials[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 968-972. doi: 10.3760/cma.j.cn501225-20220606-00221
    [7]Zhu Dongzhen, Yao Bin, Yan Ziqiang, Huang Sha, Fu Xiaobing. Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 983-988. doi: 10.3760/cma.j.cn501120-20210723-00257
    [8]Sun Lixiang, Wu Shuai, Zhang Xiaowei, Liu Wenjie, Zhang Lingjuan. Investigation on the growth factor regulatory network of dermal fibroblasts in mouse full-thickness skin defect wounds based on single-cell RNA sequencing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 629-639. doi: 10.3760/cma.j.cn501225-20220215-00029
    [9]Xiao Jian, Zhang Fan. Progress and thoughts on the regulation of wound repair by growth factors[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 610-615. doi: 10.3760/cma.j.cn501225-20220416-00139
    [10]Zeng Yingnan, Kang Yangbo, Xu Yong'an. Research advances on skin sweat gland regeneration induced by stem cells and tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 900-904. doi: 10.3760/cma.j.cn501120-20200624-00328
    [11]Lu Qingqing, Lyu Guozhong, Lyu Qiang. Cytocompatibility of angiogenesis-promoting acidified silk protein sponge matrices and its effects on wound healing of full-thickness skin defects in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 25-33. doi: 10.3760/cma.j.cn501120-20200925-00423
    [12]Lyu Guozhong, Zhao Peng. New bioactive materials for promoting wound repair and skin regeneration[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(12): 1105-1109. doi: 10.3760/cma.j.cn501120-20211029-00373
    [13]Liu Kaituo, Hu Dahai. Research advances on the application of biocompatible materials in treating diabetic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 885-886. doi: 10.3760/cma.j.cn501120-20200619-00316
    [14]Xiao Shichu, Zheng Yongjun. Status and challenges of tissue-engineered skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(3): 166-170. doi: 10.3760/cma.j.cn501120-20191202-00449
    [15]Zhu Zhikang, Wu Pan, Wang Xingang, Han Chunmao. Advances in the research of sensory nerve regeneration in tissue engineering skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(3): 237-240. doi: 10.3760/cma.j.issn.1009-2587.2019.03.016
    [16]Liu Tong, Li Haihang, Sheng Jiajun, Zhu Shihui. Advances in the research of delivery system of growth factor and the gene for promoting wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(8): 566-569. doi: 10.3760/cma.j.issn.1009-2587.2018.08.018
    [17]Chen Haojiao, Wu Pan, Wang Xin′gang, Han Chunmao. Advances in the research of application of three-dimensional bioprinting in skin tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(6): 422-426. doi: 10.3760/cma.j.issn.1009-2587.2018.06.026
    [18]Li Ran, Wang Hong, Leng Chongyan, Wang Kuan, Xie Ying. Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(5): 316-318. doi: 10.3760/cma.j.issn.1009-2587.2016.05.014
    [19]HAN Chun-mao, WANG Xin-gang. Tissue engineered skin and regenerative wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(2): 122-125. doi: 10.3760/cma.j.issn.1009-2587.2013.02.008
    [20]MA Zhong-feng, CHAI Jia-ke, YANG Hong-ming, LIANG Li-ming, XU Ming-huo. Construction of tissue-engineering skin with carrier of active composite dermal matrix[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(4): 272-274.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-03020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.9 %FULLTEXT: 6.9 %META: 87.6 %META: 87.6 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.4 %其他: 2.4 %其他: 0.3 %其他: 0.3 %Bacoor: 0.1 %Bacoor: 0.1 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.6 %三明: 0.6 %三门峡: 0.5 %三门峡: 0.5 %上海: 1.7 %上海: 1.7 %东莞: 0.5 %东莞: 0.5 %临汾: 0.1 %临汾: 0.1 %丽水: 0.9 %丽水: 0.9 %乐山: 0.3 %乐山: 0.3 %佛山: 1.0 %佛山: 1.0 %佳木斯: 0.1 %佳木斯: 0.1 %保定: 0.6 %保定: 0.6 %信阳: 0.1 %信阳: 0.1 %六安: 0.4 %六安: 0.4 %六盘水: 0.2 %六盘水: 0.2 %兰州: 0.3 %兰州: 0.3 %兴安: 0.1 %兴安: 0.1 %兴安盟: 0.1 %兴安盟: 0.1 %内江: 0.2 %内江: 0.2 %凉山彝族自治州: 0.1 %凉山彝族自治州: 0.1 %包头: 0.1 %包头: 0.1 %北京: 1.5 %北京: 1.5 %北方邦: 0.1 %北方邦: 0.1 %南京: 0.7 %南京: 0.7 %南宁: 0.2 %南宁: 0.2 %南平: 1.4 %南平: 1.4 %南昌: 0.3 %南昌: 0.3 %南通: 0.8 %南通: 0.8 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %吉林: 0.6 %吉林: 0.6 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.5 %唐山: 0.5 %嘉兴: 0.8 %嘉兴: 0.8 %大克罗伊茨: 0.3 %大克罗伊茨: 0.3 %大庆: 0.1 %大庆: 0.1 %大连: 1.2 %大连: 1.2 %天津: 0.4 %天津: 0.4 %威海: 0.1 %威海: 0.1 %宁德: 2.4 %宁德: 2.4 %宁波: 0.5 %宁波: 0.5 %安康: 1.7 %安康: 1.7 %宜春: 0.1 %宜春: 0.1 %宿迁: 2.9 %宿迁: 2.9 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广元: 0.2 %广元: 0.2 %广安: 0.1 %广安: 0.1 %广州: 1.3 %广州: 1.3 %廊坊: 0.1 %廊坊: 0.1 %延安: 3.2 %延安: 3.2 %延边朝鲜族自治州: 0.1 %延边朝鲜族自治州: 0.1 %张家口: 1.0 %张家口: 1.0 %徐州: 1.1 %徐州: 1.1 %德阳: 1.1 %德阳: 1.1 %怀化: 0.2 %怀化: 0.2 %悉尼: 0.1 %悉尼: 0.1 %意法半: 0.1 %意法半: 0.1 %成都: 0.4 %成都: 0.4 %扬州: 0.5 %扬州: 0.5 %拉贾斯坦邦: 0.5 %拉贾斯坦邦: 0.5 %无锡: 0.1 %无锡: 0.1 %日照: 0.7 %日照: 0.7 %昆明: 0.6 %昆明: 0.6 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.3 %杭州: 2.3 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %汉中: 0.9 %汉中: 0.9 %汕头: 0.4 %汕头: 0.4 %江门: 0.6 %江门: 0.6 %池州: 0.6 %池州: 0.6 %沈阳: 1.7 %沈阳: 1.7 %沧州: 0.1 %沧州: 0.1 %泉州: 1.2 %泉州: 1.2 %泰州: 1.5 %泰州: 1.5 %洛阳: 0.5 %洛阳: 0.5 %济南: 1.1 %济南: 1.1 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.2 %海得拉巴: 0.2 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %淮安: 0.2 %淮安: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 2.2 %温州: 2.2 %渭南: 0.3 %渭南: 0.3 %湖州: 1.4 %湖州: 1.4 %湘潭: 0.1 %湘潭: 0.1 %湘西: 0.3 %湘西: 0.3 %湘西土家族苗族自治州: 0.3 %湘西土家族苗族自治州: 0.3 %湛江: 0.1 %湛江: 0.1 %滁州: 0.4 %滁州: 0.4 %漯河: 0.1 %漯河: 0.1 %漳州: 0.8 %漳州: 0.8 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.3 %烟台: 0.3 %爱丁堡: 0.1 %爱丁堡: 0.1 %珠海: 0.2 %珠海: 0.2 %白山: 0.3 %白山: 0.3 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.9 %盘锦: 0.9 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.3 %绵阳: 0.3 %自贡: 0.3 %自贡: 0.3 %舟山: 0.4 %舟山: 0.4 %芒廷维尤: 7.0 %芒廷维尤: 7.0 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.8 %苏州: 0.8 %荆门: 0.9 %荆门: 0.9 %莆田: 2.1 %莆田: 2.1 %营口: 1.1 %营口: 1.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.3 %衡水: 0.3 %衢州: 1.7 %衢州: 1.7 %西宁: 2.0 %西宁: 2.0 %西安: 1.4 %西安: 1.4 %西雅图: 0.1 %西雅图: 0.1 %赣州: 0.1 %赣州: 0.1 %辽阳: 1.2 %辽阳: 1.2 %达州: 0.1 %达州: 0.1 %运城: 0.1 %运城: 0.1 %连云港: 0.3 %连云港: 0.3 %通辽: 0.2 %通辽: 0.2 %遵义: 0.1 %遵义: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 1.0 %郑州: 1.0 %郴州: 0.8 %郴州: 0.8 %鄂尔多斯: 0.7 %鄂尔多斯: 0.7 %重庆: 4.3 %重庆: 4.3 %金华: 0.8 %金华: 0.8 %金昌: 0.1 %金昌: 0.1 %铁岭: 0.1 %铁岭: 0.1 %铜川: 0.2 %铜川: 0.2 %铜陵: 1.1 %铜陵: 1.1 %银川: 0.1 %银川: 0.1 %锦州: 1.7 %锦州: 1.7 %长春: 0.1 %长春: 0.1 %长沙: 4.2 %长沙: 4.2 %长治: 0.1 %长治: 0.1 %阜新: 0.1 %阜新: 0.1 %阜阳: 0.1 %阜阳: 0.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 2.1 %鞍山: 2.1 %马德里: 0.1 %马德里: 0.1 %黄石: 0.5 %黄石: 0.5 %其他其他BacoorChinaUnited States[]三明三门峡上海东莞临汾丽水乐山佛山佳木斯保定信阳六安六盘水兰州兴安兴安盟内江凉山彝族自治州包头北京北方邦南京南宁南平南昌南通台州合肥吉林呼和浩特哈尔滨哥伦布唐山嘉兴大克罗伊茨大庆大连天津威海宁德宁波安康宜春宿迁常州常德广元广安广州廊坊延安延边朝鲜族自治州张家口徐州德阳怀化悉尼意法半成都扬州拉贾斯坦邦无锡日照昆明朝阳杭州桂林榆林武汉汉中汕头江门池州沈阳沧州泉州泰州洛阳济南海口海得拉巴淄博淮北淮安深圳温州渭南湖州湘潭湘西湘西土家族苗族自治州湛江滁州漯河漳州潍坊烟台爱丁堡珠海白山盐城盘锦石嘴山石家庄福州秦皇岛绵阳自贡舟山芒廷维尤芝加哥苏州荆门莆田营口葫芦岛蚌埠衡水衢州西宁西安西雅图赣州辽阳达州运城连云港通辽遵义邵阳郑州郴州鄂尔多斯重庆金华金昌铁岭铜川铜陵银川锦州长春长沙长治阜新阜阳青岛鞍山马德里黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(3)

    Article Metrics

    Article views (1686) PDF downloads(104) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return