Weng TT,Cai CH,Han CM,et al.Research advances on biomaterials for the delivery of growth factors to regulate wound repair[J].Chin J Burns Wounds,2022,38(7):691-696.DOI: 10.3760/cma.j.cn501225-20220430-00166.
Citation: Mu ZL,Teng YX,Zhang J,et al.Research advances on the roles of metabolic remodeling and protein acylation modification in keloids[J].Chin J Burns Wounds,2024,40(6):589-593.DOI: 10.3760/cma.j.cn501225-20231207-00229.

Research advances on the roles of metabolic remodeling and protein acylation modification in keloids

doi: 10.3760/cma.j.cn501225-20231207-00229
Funds:

General Program of Natural Science Foundation of Shandong Province of China ZR2021MH338

More Information
  • Corresponding author: Fu Yanjie, Email: zcfyjzzy@163.com
  • Received Date: 2023-12-07
    Available Online: 2024-06-21
  • Keloid is a common skin disease, and the mechanism of its occurrence is not fully understood. There is evidence to show that multiple factors such as genetics, race, age, gender, hormones, infection, immunity, and oxidative stress, etc. may be related to the occurrence of keloids. Metabolic remodeling and protein acylation modification, as two important biological processes, play important roles in various skin related diseases. Based on this, this article reviews the roles of metabolic remodeling and protein acylation modification in keloids and the interrelationship between the two biological processes, and explores the application prospects of targeting the two biological processes in the prevention and treatment of keloids.

     

  • [1]
    王文波.瘢痕疙瘩最新研究进展[J].组织工程与重建外科杂志,2018,14(6):357-360.DOI: 10.3969/j.issn.1673-0364.2018.06.016.
    [2]
    杨丽Twist促进乳腺癌细胞能量代谢重塑的作用及相关机制研究重庆重庆医科大学2015DOI:10.7666/d.D791520

    杨丽.Twist促进乳腺癌细胞能量代谢重塑的作用及相关机制研究[D].重庆:重庆医科大学,2015.DOI:10.7666/d.D791520.

    [3]
    SunL,ZhangH,GaoP.Metabolic reprogramming and epigenetic modifications on the path to cancer[J].Protein Cell,2022,13(12):877-919.DOI: 10.1007/s13238-021-00846-7.
    [4]
    MentchSJ,MehrmohamadiM,HuangL,et al.Histone methylation dynamics and gene regulation occur through the sensing of one-carbon metabolism[J].Cell Metab,2015,22(5):861-873.DOI: 10.1016/j.cmet.2015.08.024.
    [5]
    KaelinWGJr,McKnightSL.Influence of metabolism on epigenetics and disease[J].Cell,2013,153(1):56-69.DOI: 10.1016/j.cell.2013.03.004.
    [6]
    李泽炎,于颖,沈嘉伦,等.HIF-1α参与瘢痕疙瘩生成机制的研究现状[J].中国美容整形外科杂志,2021,32(11):673-677.DOI: 10.3969/j.issn.1673-7040.2021.11.010.
    [7]
    王其飞瘢痕疙瘩成纤维细胞在低氧下的糖代谢特点及作用机制北京北京大学医学部2021DOI:10.44277/d.cnki.gbdyx.2021.000068

    王其飞.瘢痕疙瘩成纤维细胞在低氧下的糖代谢特点及作用机制[D].北京:北京大学医学部,2021.DOI:10.44277/d.cnki.gbdyx.2021.000068.

    [8]
    VaupelP,MulthoffG.Fatal alliance of hypoxia-/HIF-1α-driven microenvironmental traits promoting cancer progression[J].Adv Exp Med Biol,2020,1232:169-176.DOI: 10.1007/978-3-030-34461-0_21.
    [9]
    LiQ,QinZ,NieF,et al.Metabolic reprogramming in keloid fibroblasts: aerobic glycolysis and a novel therapeutic strategy[J].Biochem Biophys Res Commun,2018,496(2):641-647.DOI: 10.1016/j.bbrc.2018.01.068.
    [10]
    雷睿缺氧诱导因子-1α及其相关信号通路促进瘢痕疙瘩形成的作用机制研究杭州浙江大学2017

    雷睿.缺氧诱导因子-1α及其相关信号通路促进瘢痕疙瘩形成的作用机制研究[D].杭州:浙江大学,2017.

    [11]
    HuangC,OgawaR.Roles of lipid metabolism in keloid development[J].Lipids Health Dis,2013,12:60.DOI: 10.1186/1476-511X-12-60.
    [12]
    张慧君.脂类代谢对瘢痕疙瘩作用的研究进展[J]. 医药前沿,2016,6(7):5-6.
    [13]
    AndrewsD,GodsonC.Lipoxins and synthetic lipoxin mimetics: therapeutic potential in renal diseases[J].Biochim Biophys Acta Mol Cell Biol Lipids,2021,1866(8):158940.DOI: 10.1016/j.bbalip.2021.158940.
    [14]
    OwenB,GuiryPJ.A general synthesis of aromatic and heteroaromatic lipoxin B4 analogues[J].Org Biomol Chem,2023,21(41):8294-8300.DOI: 10.1039/d3ob01076g.
    [15]
    MilesEA,AllenE,CalderPC.In vitro effects of eicosanoids derived from different 20-carbon fatty acids on production of monocyte-derived cytokines in human whole blood cultures[J].Cytokine,2002,20(5):215-223.DOI: 10.1006/cyto.2002.2007.
    [16]
    ShanM,LiuH,HaoY,et al.Metabolomic profiling reveals that 5-hydroxylysine and 1-methylnicotinamide are metabolic indicators of keloid severity[J].Front Genet,2022,12:804248.DOI: 10.3389/fgene.2021.804248.
    [17]
    SakakiH,MatsumiyaT,KusumiA,et al.Interleukin-1β induces matrix metalloproteinase-1 expression in cultured human gingival fibroblasts: role of cyclooxygenase-2 and prostaglandin E2[J].Oral Dis,2004,10(2):87-93.DOI: 10.1046/j.1354-523x.2003.00982.x.
    [18]
    LouwL.Keloids in rural black South Africans. Part 3: a lipid model for the prevention and treatment of keloid formations[J].Prostaglandins Leukot Essent Fatty Acids,2000,63(5):255-262.DOI: 10.1054/plef.2000.0209.
    [19]
    HendersonJ,DuffyL,StrattonR,et al.Metabolic reprogramming of glycolysis and glutamine metabolism are key events in myofibroblast transition in systemic sclerosis pathogenesis[J].J Cell Mol Med,2020,24(23):14026-14038.DOI: 10.1111/jcmm.16013.
    [20]
    HuY,ZhouX,ChenL,et al.Landscape of circulating metabolic fingerprinting for keloid[J].Front Immunol,2022,13:1005366.DOI: 10.3389/fimmu.2022.1005366.
    [21]
    StevensonAW,DengZ,AllahhamA,et al.The epigenetics of keloids[J].Exp Dermatol,2021,30(8):1099-1114.DOI: 10.1111/exd.14414.
    [22]
    LvW,RenY,HouK,et al.Epigenetic modification mechanisms involved in keloid: current status and prospect[J].Clin Epigenetics,2020,12(1):183.DOI: 10.1186/s13148-020-00981-8.
    [23]
    HuangM,HuangJ,ZhengY,et al.Histone acetyltransferase inhibitors: an overview in synthesis, structure-activity relationship and molecular mechanism[J].Eur J Med Chem,2019,178:259-286.DOI: 10.1016/j.ejmech.2019.05.078.
    [24]
    SetoE,YoshidaM.Erasers of histone acetylation: the histone deacetylase enzymes[J].Cold Spring Harb Perspect Biol,2014,6(4):a018713.DOI: 10.1101/cshperspect.a018713.
    [25]
    程希,徐慧雯,黄炜,等. 丁酸钠通过组蛋白丁酰化修饰改善糖尿病肾脏病炎症和纤维化[J]. 中华糖尿病杂志,2023,15(2):160-168. DOI: 10.3760/cma.j.cn115791-20220422-00177.
    [26]
    Fitzgerald O'ConnorEJ,BadshahII,AddaeLY,et al.Histone deacetylase 2 is upregulated in normal and keloid scars[J].J Invest Dermatol,2012,132(4):1293-1296.DOI: 10.1038/jid.2011.432.
    [27]
    TuT,HuangJ,LinM,et al.CUDC-907 reverses pathological phenotype of keloid fibroblasts in vitro and in vivo via dual inhibition of PI3K/Akt/mTOR signaling and HDAC2[J].Int J Mol Med,2019,44(5):1789-1800.DOI: 10.3892/ijmm.2019.4348.
    [28]
    仇克清基于定量修饰组学研究增生性瘢痕中差异赖氨酸乙酰化和琥珀酰化修饰南昌南昌大学医学部2023

    仇克清.基于定量修饰组学研究增生性瘢痕中差异赖氨酸乙酰化和琥珀酰化修饰[D].南昌:南昌大学医学部,2023.

    [29]
    JianX,QuL,WangY,et al.Trichostatin A-induced miR-30a-5p regulates apoptosis and proliferation of keloid fibroblasts via targeting BCL2[J].Mol Med Rep,2019,19(6):5251-5262.DOI: 10.3892/mmr.2019.10185.
    [30]
    LvD,XuZ,ChengP,et al.S-Nitrosylation-mediated coupling of DJ-1 with PTEN induces PI3K/AKT/mTOR pathway-dependent keloid formation[J/OL].Burns Trauma,2023,11:tkad024[2023-12-07].https://pubmed.ncbi.nlm.nih.gov/38116467/.DOI: 10.1093/burnst/tkad024.
    [31]
    IvanovGS,IvanovaT,KurashJ,et al.Methylation-acetylation interplay activates p53 in response to DNA damage[J].Mol Cell Biol,2007,27(19):6756-6769.DOI: 10.1128/MCB.00460-07.
    [32]
    Le CamL,LinaresLK,PaulC,et al.E4F1 is an atypical ubiquitin ligase that modulates p53 effector functions independently of degradation[J].Cell,2006,127(4):775-788.DOI: 10.1016/j.cell.2006.09.031.
    [33]
    LeiR,ZhangS,WangY,et al.Metformin inhibits epithelial-to-mesenchymal transition of keloid fibroblasts via the HIF-1α/PKM2 signaling pathway[J].Int J Med Sci,2019,16(7):960-966.DOI: 10.7150/ijms.32157.
    [34]
    ShangS,LiuJ,HuaF.Protein acylation: mechanisms, biological functions and therapeutic targets[J].Signal Transduct Target Ther,2022,7(1):396.DOI: 10.1038/s41392-022-01245-y.
    [35]
    McDonnellE,CrownSB,FoxDB,et al.Lipids reprogram metabolism to become a major carbon source for histone acetylation[J].Cell Rep,2016,17(6):1463-1472.DOI: 10.1016/j.celrep.2016.10.012.
    [36]
    CarrerA,TrefelyS,ZhaoS,et al.Acetyl-CoA metabolism supports multistep pancreatic tumorigenesis[J].Cancer Discov,2019,9(3):416-435.DOI: 10.1158/2159-8290.CD-18-0567.
    [37]
    NoeJT,RendonBE,GellerAE,et al.Lactate supports a metabolic-epigenetic link in macrophage polarization[J].Sci Adv,2021,7(46):eabi8602.DOI: 10.1126/sciadv.abi8602.
    [38]
    SeoudyWM,Mohy El DienSM,Abdel ReheemTA,et al.Macrophages of the M1 and M2 types play a role in keloids pathogenesis[J].Int Wound J,2023,20(1):38-45.DOI: 10.1111/iwj.13834.
    [39]
    WangJ,YangP,YuT,et al.Lactylation of PKM2 suppresses inflammatory metabolic adaptation in pro-inflammatory macrophages[J].Int J Biol Sci,2022,18(16):6210-6225.DOI: 10.7150/ijbs.75434.
    [40]
    FuY,YuJ,LiF,et al.Oncometabolites drive tumorigenesis by enhancing protein acylation: from chromosomal remodelling to nonhistone modification[J].J Exp Clin Cancer Res,2022,41(1):144.DOI: 10.1186/s13046-022-02338-w.
    [41]
    LiuX,ChenW,ZengQ,et al.Single-cell RNA-sequencing reveals lineage-specific regulatory changes of fibroblasts and vascular endothelial cells in keloids[J].J Invest Dermatol,2022,142(1):124-135.e11.DOI: 10.1016/j.jid.2021.06.010.
    [42]
    RhoH,TerryAR,ChronisC,et al.Hexokinase 2-mediated gene expression via histone lactylation is required for hepatic stellate cell activation and liver fibrosis[J].Cell Metab,2023,35(8):1406-1423.e8.DOI: 10.1016/j.cmet.2023.06.013.
    [43]
    DongZ,ZhuangQ,NingM,et al.Palmitic acid stimulates NLRP3 inflammasome activation through TLR4-NF-κB signal pathway in hepatic stellate cells[J].Ann Transl Med,2020,8(5):168.DOI: 10.21037/atm.2020.02.21.
    [44]
    GeJ,CuiH,XieN,et al.Glutaminolysis promotes collagen translation and stability via α-ketoglutarate-mediated mTOR activation and proline hydroxylation[J].Am J Respir Cell Mol Biol,2018,58(3):378-390.DOI: 10.1165/rcmb.2017-0238OC.
    [45]
    LiH,DixonEE,WuH,et al.Comprehensive single-cell transcriptional profiling defines shared and unique epithelial injury responses during kidney fibrosis[J].Cell Metab,2022,34(12):1977-1998.e9.DOI: 10.1016/j.cmet.2022.09.026.
    [46]
    李珍玲,金哲虎,李莲花,等.瘢痕疙瘩的注射治疗现状及进展[J].临床皮肤科杂志,2023,52(12):758-761.DOI: 10.16761/j.cnki.1000-4963.2023.12.015.
    [47]
    LeeHJ,JangYJ.Recent understandings of biology, prophylaxis and treatment strategies for hypertrophic scars and keloids[J].Int J Mol Sci,2018,19(3):711.DOI: 10.3390/ijms19030711.
    [48]
    Abou-TalebDAE,BadaryDM.Intralesional verapamil in the treatment of keloids: a clinical, histopathological, and immunohistochemical study[J].J Cosmet Dermatol,2021,20(1):267-273.DOI: 10.1111/jocd.13476.
  • Relative Articles

    [1]Luo Gaoxing, Zhou Xuan. Application of advanced biomaterials in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2024, 40(1): 26-32. doi: 10.3760/cma.j.cn501225-20231128-00211
    [2]Li Wei, Kong Weishi, Bao Yulu, Sun Yu. Research advances of skin tissue engineering scaffolds loaded with adipose-derived stem cells in wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1090-1095. doi: 10.3760/cma.j.cn501225-20221123-00502
    [3]Peng Yu, Meng Hao, Li Pinxue, Jiang Yufeng, Fu Xiaobing. Research advances of stem cell-based tissue engineering repair materials in promoting the healing of chronic refractory wounds on the body surface[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(3): 290-295. doi: 10.3760/cma.j.cn501225-20220407-00126
    [4]Li Yang, Xi Taotao, Zheng Dongmei, Ge Jun, Luo Xiao'e, Wang Lin. Recent advances of skin tissue engineering based on three-dimensional bioprinting technology[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2023, 39(11): 1096-1100. doi: 10.3760/cma.j.cn501225-20230131-00029
    [5]Liu Yifan, Jiang Zhaoqi, Huang Yao, Ni Pengwen, Xie Ting. Feasibility study on the preparation of novel negative pressure materials for constructing new matrix of full-thickness skin defect wounds in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 650-660. doi: 10.3760/cma.j.cn501120-20210401-00113
    [6]Chen Jiqiu, Zhu Shihui. Research advances on the construction of artificial dermal scaffolds based on biomaterials[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 968-972. doi: 10.3760/cma.j.cn501225-20220606-00221
    [7]Zhu Dongzhen, Yao Bin, Yan Ziqiang, Huang Sha, Fu Xiaobing. Research advances on the construction of an ideal scar model in vitro based on innovative tissue engineering technology[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(10): 983-988. doi: 10.3760/cma.j.cn501120-20210723-00257
    [8]Sun Lixiang, Wu Shuai, Zhang Xiaowei, Liu Wenjie, Zhang Lingjuan. Investigation on the growth factor regulatory network of dermal fibroblasts in mouse full-thickness skin defect wounds based on single-cell RNA sequencing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 629-639. doi: 10.3760/cma.j.cn501225-20220215-00029
    [9]Xiao Jian, Zhang Fan. Progress and thoughts on the regulation of wound repair by growth factors[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2022, 38(7): 610-615. doi: 10.3760/cma.j.cn501225-20220416-00139
    [10]Zeng Yingnan, Kang Yangbo, Xu Yong'an. Research advances on skin sweat gland regeneration induced by stem cells and tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 900-904. doi: 10.3760/cma.j.cn501120-20200624-00328
    [11]Lu Qingqing, Lyu Guozhong, Lyu Qiang. Cytocompatibility of angiogenesis-promoting acidified silk protein sponge matrices and its effects on wound healing of full-thickness skin defects in rats[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(1): 25-33. doi: 10.3760/cma.j.cn501120-20200925-00423
    [12]Lyu Guozhong, Zhao Peng. New bioactive materials for promoting wound repair and skin regeneration[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(12): 1105-1109. doi: 10.3760/cma.j.cn501120-20211029-00373
    [13]Liu Kaituo, Hu Dahai. Research advances on the application of biocompatible materials in treating diabetic wounds[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2021, 37(9): 885-886. doi: 10.3760/cma.j.cn501120-20200619-00316
    [14]Xiao Shichu, Zheng Yongjun. Status and challenges of tissue-engineered skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2020, 36(3): 166-170. doi: 10.3760/cma.j.cn501120-20191202-00449
    [15]Zhu Zhikang, Wu Pan, Wang Xingang, Han Chunmao. Advances in the research of sensory nerve regeneration in tissue engineering skin[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2019, 35(3): 237-240. doi: 10.3760/cma.j.issn.1009-2587.2019.03.016
    [16]Liu Tong, Li Haihang, Sheng Jiajun, Zhu Shihui. Advances in the research of delivery system of growth factor and the gene for promoting wound healing[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(8): 566-569. doi: 10.3760/cma.j.issn.1009-2587.2018.08.018
    [17]Chen Haojiao, Wu Pan, Wang Xin′gang, Han Chunmao. Advances in the research of application of three-dimensional bioprinting in skin tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2018, 34(6): 422-426. doi: 10.3760/cma.j.issn.1009-2587.2018.06.026
    [18]Li Ran, Wang Hong, Leng Chongyan, Wang Kuan, Xie Ying. Advances in the research of natural polymeric materials and their derivatives in the manufacture of scaffolds for dermal tissue engineering[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2016, 32(5): 316-318. doi: 10.3760/cma.j.issn.1009-2587.2016.05.014
    [19]HAN Chun-mao, WANG Xin-gang. Tissue engineered skin and regenerative wound repair[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2013, 29(2): 122-125. doi: 10.3760/cma.j.issn.1009-2587.2013.02.008
    [20]MA Zhong-feng, CHAI Jia-ke, YANG Hong-ming, LIANG Li-ming, XU Ming-huo. Construction of tissue-engineering skin with carrier of active composite dermal matrix[J]. CHINESE JOURNAL OF BURNS AND WOUNDS, 2008, 24(4): 272-274.
  • Created with Highcharts 5.0.7Amount of accessChart context menuAbstract Views, HTML Views, PDF Downloads StatisticsAbstract ViewsHTML ViewsPDF Downloads2024-052024-062024-072024-082024-092024-102024-112024-122025-012025-022025-032025-03020406080
    Created with Highcharts 5.0.7Chart context menuAccess Class DistributionFULLTEXT: 6.9 %FULLTEXT: 6.9 %META: 87.6 %META: 87.6 %PDF: 5.5 %PDF: 5.5 %FULLTEXTMETAPDF
    Created with Highcharts 5.0.7Chart context menuAccess Area Distribution其他: 2.4 %其他: 2.4 %其他: 0.3 %其他: 0.3 %Bacoor: 0.1 %Bacoor: 0.1 %China: 0.3 %China: 0.3 %United States: 0.1 %United States: 0.1 %[]: 0.1 %[]: 0.1 %三明: 0.6 %三明: 0.6 %三门峡: 0.5 %三门峡: 0.5 %上海: 1.7 %上海: 1.7 %东莞: 0.5 %东莞: 0.5 %临汾: 0.1 %临汾: 0.1 %丽水: 0.9 %丽水: 0.9 %乐山: 0.3 %乐山: 0.3 %佛山: 1.0 %佛山: 1.0 %佳木斯: 0.1 %佳木斯: 0.1 %保定: 0.6 %保定: 0.6 %信阳: 0.1 %信阳: 0.1 %六安: 0.4 %六安: 0.4 %六盘水: 0.2 %六盘水: 0.2 %兰州: 0.3 %兰州: 0.3 %兴安: 0.1 %兴安: 0.1 %兴安盟: 0.1 %兴安盟: 0.1 %内江: 0.2 %内江: 0.2 %凉山彝族自治州: 0.1 %凉山彝族自治州: 0.1 %包头: 0.1 %包头: 0.1 %北京: 1.5 %北京: 1.5 %北方邦: 0.1 %北方邦: 0.1 %南京: 0.7 %南京: 0.7 %南宁: 0.2 %南宁: 0.2 %南平: 1.4 %南平: 1.4 %南昌: 0.3 %南昌: 0.3 %南通: 0.8 %南通: 0.8 %台州: 0.2 %台州: 0.2 %合肥: 0.4 %合肥: 0.4 %吉林: 0.6 %吉林: 0.6 %呼和浩特: 0.3 %呼和浩特: 0.3 %哈尔滨: 0.1 %哈尔滨: 0.1 %哥伦布: 0.1 %哥伦布: 0.1 %唐山: 0.5 %唐山: 0.5 %嘉兴: 0.8 %嘉兴: 0.8 %大克罗伊茨: 0.3 %大克罗伊茨: 0.3 %大庆: 0.1 %大庆: 0.1 %大连: 1.2 %大连: 1.2 %天津: 0.4 %天津: 0.4 %威海: 0.1 %威海: 0.1 %宁德: 2.4 %宁德: 2.4 %宁波: 0.5 %宁波: 0.5 %安康: 1.7 %安康: 1.7 %宜春: 0.1 %宜春: 0.1 %宿迁: 2.9 %宿迁: 2.9 %常州: 0.1 %常州: 0.1 %常德: 0.2 %常德: 0.2 %广元: 0.2 %广元: 0.2 %广安: 0.1 %广安: 0.1 %广州: 1.3 %广州: 1.3 %廊坊: 0.1 %廊坊: 0.1 %延安: 3.2 %延安: 3.2 %延边朝鲜族自治州: 0.1 %延边朝鲜族自治州: 0.1 %张家口: 1.0 %张家口: 1.0 %徐州: 1.1 %徐州: 1.1 %德阳: 1.1 %德阳: 1.1 %怀化: 0.2 %怀化: 0.2 %悉尼: 0.1 %悉尼: 0.1 %意法半: 0.1 %意法半: 0.1 %成都: 0.4 %成都: 0.4 %扬州: 0.5 %扬州: 0.5 %拉贾斯坦邦: 0.5 %拉贾斯坦邦: 0.5 %无锡: 0.1 %无锡: 0.1 %日照: 0.7 %日照: 0.7 %昆明: 0.6 %昆明: 0.6 %朝阳: 0.1 %朝阳: 0.1 %杭州: 2.3 %杭州: 2.3 %桂林: 0.1 %桂林: 0.1 %榆林: 0.1 %榆林: 0.1 %武汉: 0.6 %武汉: 0.6 %汉中: 0.9 %汉中: 0.9 %汕头: 0.4 %汕头: 0.4 %江门: 0.6 %江门: 0.6 %池州: 0.6 %池州: 0.6 %沈阳: 1.7 %沈阳: 1.7 %沧州: 0.1 %沧州: 0.1 %泉州: 1.2 %泉州: 1.2 %泰州: 1.5 %泰州: 1.5 %洛阳: 0.5 %洛阳: 0.5 %济南: 1.1 %济南: 1.1 %海口: 0.1 %海口: 0.1 %海得拉巴: 0.2 %海得拉巴: 0.2 %淄博: 0.1 %淄博: 0.1 %淮北: 0.1 %淮北: 0.1 %淮安: 0.2 %淮安: 0.2 %深圳: 0.4 %深圳: 0.4 %温州: 2.2 %温州: 2.2 %渭南: 0.3 %渭南: 0.3 %湖州: 1.4 %湖州: 1.4 %湘潭: 0.1 %湘潭: 0.1 %湘西: 0.3 %湘西: 0.3 %湘西土家族苗族自治州: 0.3 %湘西土家族苗族自治州: 0.3 %湛江: 0.1 %湛江: 0.1 %滁州: 0.4 %滁州: 0.4 %漯河: 0.1 %漯河: 0.1 %漳州: 0.8 %漳州: 0.8 %潍坊: 0.1 %潍坊: 0.1 %烟台: 0.3 %烟台: 0.3 %爱丁堡: 0.1 %爱丁堡: 0.1 %珠海: 0.2 %珠海: 0.2 %白山: 0.3 %白山: 0.3 %盐城: 0.1 %盐城: 0.1 %盘锦: 0.9 %盘锦: 0.9 %石嘴山: 0.2 %石嘴山: 0.2 %石家庄: 0.3 %石家庄: 0.3 %福州: 0.2 %福州: 0.2 %秦皇岛: 0.4 %秦皇岛: 0.4 %绵阳: 0.3 %绵阳: 0.3 %自贡: 0.3 %自贡: 0.3 %舟山: 0.4 %舟山: 0.4 %芒廷维尤: 7.0 %芒廷维尤: 7.0 %芝加哥: 0.2 %芝加哥: 0.2 %苏州: 0.8 %苏州: 0.8 %荆门: 0.9 %荆门: 0.9 %莆田: 2.1 %莆田: 2.1 %营口: 1.1 %营口: 1.1 %葫芦岛: 0.1 %葫芦岛: 0.1 %蚌埠: 0.1 %蚌埠: 0.1 %衡水: 0.3 %衡水: 0.3 %衢州: 1.7 %衢州: 1.7 %西宁: 2.0 %西宁: 2.0 %西安: 1.4 %西安: 1.4 %西雅图: 0.1 %西雅图: 0.1 %赣州: 0.1 %赣州: 0.1 %辽阳: 1.2 %辽阳: 1.2 %达州: 0.1 %达州: 0.1 %运城: 0.1 %运城: 0.1 %连云港: 0.3 %连云港: 0.3 %通辽: 0.2 %通辽: 0.2 %遵义: 0.1 %遵义: 0.1 %邵阳: 0.1 %邵阳: 0.1 %郑州: 1.0 %郑州: 1.0 %郴州: 0.8 %郴州: 0.8 %鄂尔多斯: 0.7 %鄂尔多斯: 0.7 %重庆: 4.3 %重庆: 4.3 %金华: 0.8 %金华: 0.8 %金昌: 0.1 %金昌: 0.1 %铁岭: 0.1 %铁岭: 0.1 %铜川: 0.2 %铜川: 0.2 %铜陵: 1.1 %铜陵: 1.1 %银川: 0.1 %银川: 0.1 %锦州: 1.7 %锦州: 1.7 %长春: 0.1 %长春: 0.1 %长沙: 4.2 %长沙: 4.2 %长治: 0.1 %长治: 0.1 %阜新: 0.1 %阜新: 0.1 %阜阳: 0.1 %阜阳: 0.1 %青岛: 0.9 %青岛: 0.9 %鞍山: 2.1 %鞍山: 2.1 %马德里: 0.1 %马德里: 0.1 %黄石: 0.5 %黄石: 0.5 %其他其他BacoorChinaUnited States[]三明三门峡上海东莞临汾丽水乐山佛山佳木斯保定信阳六安六盘水兰州兴安兴安盟内江凉山彝族自治州包头北京北方邦南京南宁南平南昌南通台州合肥吉林呼和浩特哈尔滨哥伦布唐山嘉兴大克罗伊茨大庆大连天津威海宁德宁波安康宜春宿迁常州常德广元广安广州廊坊延安延边朝鲜族自治州张家口徐州德阳怀化悉尼意法半成都扬州拉贾斯坦邦无锡日照昆明朝阳杭州桂林榆林武汉汉中汕头江门池州沈阳沧州泉州泰州洛阳济南海口海得拉巴淄博淮北淮安深圳温州渭南湖州湘潭湘西湘西土家族苗族自治州湛江滁州漯河漳州潍坊烟台爱丁堡珠海白山盐城盘锦石嘴山石家庄福州秦皇岛绵阳自贡舟山芒廷维尤芝加哥苏州荆门莆田营口葫芦岛蚌埠衡水衢州西宁西安西雅图赣州辽阳达州运城连云港通辽遵义邵阳郑州郴州鄂尔多斯重庆金华金昌铁岭铜川铜陵银川锦州长春长沙长治阜新阜阳青岛鞍山马德里黄石

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (208) PDF downloads(15) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return